Preview

Veterinary Science Today

Advanced search

Recombinant antigens in serological diagnostics of transboundary and emerging bovine infections

https://doi.org/10.29326/2304-196X-2025-14-4-372-382

Abstract

Introduction. Transboundary and emerging infections of cattle and small ruminants, such as peste des petits ruminants, Schmallenberg virus infection, etc., pose a serious animal health and economic threat in the context of developing globalization. Given the current geopolitical situation, the need for modern domestically produced diagnostic systems is particularly acute. Such systems can be developed using genetic engineering methods.

Objective. Analysis of domestic and foreign publications on the production of recombinant proteins of pathogens of transboundary and emerging infections of cattle and small ruminants. Creation of genetic constructs based on the processed data for further development of diagnostic tools, in particular ELISA test systems.

Materials and methods. Using bioinformatics tools, codon composition of the sequences encoding the nucleocapsid proteins of peste des petits ruminants virus (PPRV) and Schmallenberg virus (SBV) was analyzed and optimized. The optimized gene fragments were synthesized de novo and cloned into the pET-32b(+) expression vector. Successful insertion of the target sequence into the vector was confirmed by polymerase chain reaction and restriction analysis.

Results. Information on ELISA test systems developed on the basis of recombinant antigens for the diagnosis of peste des petits ruminants and Schmallenberg virus infection is presented. The main technological aspects of obtaining recombinant antigens for their further use in a diagnostic system factored in the biological features of a particular pathogen are highlighted. Our proprietary methodology for creating protein expression vectors for the pathogens of the diseases under review is additionally described.

Conclusion. The most promising recombinant antigens for use in ELISA test systems designed to detect antibodies against PPRV and SBV are full-length and truncated virion nucleocapsid proteins. Furthermore, the biophysical properties and antigenic structure of these proteins enable their production in Escherichia coli.  It should be noted that production of significant amounts of functional proteins in soluble form may require their expression as part of fusion proteins with tags enhancing solubility and facilitating correct folding.

About the Authors

Nikita A. Tenitilov
Federal Centre for Animal Health
Russian Federation

Nikita A. Tenitilov, Postgraduate Student, Veterinarian, Molecular and Genetic Research Laboratory,

ul. Gvardeyskaya, 6, Yur’evets, Vladimir 600901.



Natalya A. Yarygina
Federal Centre for Animal Health
Russian Federation

Natalya A. Yarygina, Postgraduate Student, Veterinarian, Molecular and Genetic Research Laboratory,

ul. Gvardeyskaya, 6, Yur’evets, Vladimir 600901.



Alexander V. Sprygin
Federal Centre for Animal Health
Russian Federation

Alexander V. Sprygin, Dr. Sci. (Biology), Head of Laboratory for Molecular and Genetic Research, 

ul. Gvardeyskaya, 6, Yur’evets, Vladimir 600901.



References

1. Kumar N., Maherchandani S., Kashyap S. K., Singh S. V., Sharma S., Chaubey K. K., Ly H. Peste des petits ruminants virus infection of small ruminants: A comprehensive review. Viruses. 2014; 6 (6): 2287–2327. https://doi.org/10.3390/v6062287

2. Das A., Mahanta D., Choudhury F. A., Barua A., Talukdar M. J. Peste des petits ruminants: A comprehensive overview. The Pharma Innovation Journal. 2022; 11 (9S): 776–782. https://www.thepharmajournal.com/archives/2022/vol11issue9S/PartJ/S-11-8-235-850.pdf

3. Zakutskiy N. I., Balyshev V. M., Kneize A. V., Gouzalova A. G., Yurkov S. G. Peste des petits ruminants (contemporary situation, epizootology, specific prophylaxis and control measures). Scientific Journal of KubSAU. 2012; (83). http://ej.kubagro.ru/2012/09/pdf/31.pdf (in Russ.)

4. Kalantaenko Yu. F., Mikhalkin I. P., Balyshev V. M., Kolomytsev A. A., Gorshkova T. F., Surkov V. B. Chuma melkikh zhvachnykh – rasprostranenie, diagnostika i profilaktika = Peste des petits ruminants – spread, diagnosis and prevention. Russian Journal of Veterinary Pathology. 2007; (2): 38–43. https://elibrary.ru/oezjed (in Russ.)

5. Mishchenko A. V., Mishchenko V. A., Chernykh O. Yu., Shevkoplyas V. N., Krivonos R. A., Lysenko A. A., Chernov A. N. Episotic characteristics of small ruminants pest. Тhe Veterinarian. 2018; (6): 40–47. https://elibrary.ru/yqvekl (in Russ.)

6. Baron M. D., Diallo A., Lancelot R., Libeau G. Peste des petits ruminants virus. Advances in Virus Research. 2016; 95: 1–42. https://doi.org/10.1016/bs.aivir.2016.02.001

7. Sereda A. D., Morozova D. Yu., Imatdinov A. R., Lyska V. M., Zhivodyorov S. P., Slivko I. A., Lunitsyn A. V. Development of test systems using a recombinant nucleocapsid viral protein for serodiagnosis of peste des petits ruminants. Agricultural Biology. 2019; 54 (6): 1225–1235. https://doi.org/10.15389/agrobiology.2019.6.1225eng

8. Vavilova N. V., Scherbakov A. V. The use of the recombinant nucleocapsid protein in the indirect ELISA aimed at the detection of antibodies against the virus of peste des petits ruminants. Russian Journal of Veterinary Pathology. 2006; (4): 76–78. https://elibrary.ru/oedrer (in Russ.)

9. Morozova D. Yu., Imatdinov A. R., Zhivoderov S. P., Titov I. A., Lyska V. M., Lunitsyn A. V., Sereda A. D. Obtaining recombinant nucleocapsid protein of PPR virus for disease serodiagnostic. Agricultural Biology. 2019; 54 (2): 337–346. https://doi.org/10.15389/agrobiology.2019.2.337eng

10. Yadav V., Balamurugan V., Bhanuprakash V., Sen A., Bhanot V., Venkatesan G., et al. Expression of peste des petits ruminants virus nucleocapsid protein in prokaryotic system and its potential use as a diagnostic antigen or immunogen. Journal of Virological Methods. 2009; 162 (1–2): 56–63. https://doi.org/10.1016/j.jviromet.2009.07.014

11. Zhang G.-R., Zeng J.-Y., Zhu Y.-M., Dong S.-J., Zhu S., Yu R.-S., et al. Development of an indirect ELISA with artificially synthesized N protein of PPR virus. Intervirology. 2012; 55 (1): 12–20. https://doi.org/10.1159/000322220

12. Libeau G., Préhaud C., Lancelot R., Colas F., Guerre L., Bishop D. H. L., Diallo A. Development of a competitive ELISA for detecting antibodies to the peste des petits ruminants virus using a recombinant nucleoprotein. Research in Veterinary Science. 1995; 58 (1): 50–55. https://doi.org/10.1016/00345288(95)90088-8

13. Choi K.-S., Nah J.-J, Ko Y.-J., Kang S.-Y., Jo N.-I. Rapid competitive enzyme-linked immunosorbent assay for detection of antibodies to peste des petits ruminants virus. Clinical and Diagnostic Laboratory Immunology. 2005; 12 (4): 542–547. https://doi.org/10.1128/CDLI.12.4.542-547.2005

14. Burova O. A., Zakharova O. I., Toropova N. N., Liskova E. A., Yashin I. V., Blokhin A. A. Schmallenberg disease: literature review and epizootic situation in the world and in Russia. Agricultural Science Euro- North- East. 2022; 23 (1): 7–15. https://doi.org/10.30766/2072-9081.2022.23.1.7-15 (in Russ.)

15. Makarov V. V., Guliukin M. I., Lvov D. K. Zoopathogenic orthobuniaviruses (Orthobunyavirus, Bunyaviridae). Problems of Virology. 2016; 61 (2): 53–58. https://doi.org/10.18821/0507-4088-2016-61-2-53-58 (in Russ.)

16. Bréard E., Lara E., Comtet L., Viarouge C., Doceul V., Desprat A., et al. Validation of a commercially available indirect ELISA using a nucleocapside recombinant protein for detection of Schmallenberg virus antibodies. PLoS ONE. 2013; 8 (1): e53446. https://doi.org/10.1371/journal.pone.0053446

17. Lazutka J., Zvirbliene A., Dalgediene I., Petraityte- Burneikiene R., Spakova A., Sereika V., et al. Generation of recombinant Schmallenberg virus nucleocapsid protein in yeast and development of virus- specific monoclonal antibodies. Journal of Immunology Research. 2014; 2014:160316. https://doi.org/10.1155/2014/160316

18. Zhang Y., Wu S., Wang J., Wernike K., Lv J., Feng C., et al. Expression and purification of the nucleocapsid protein of Schmallenberg virus, and preparation and characterization of a monoclonal antibody against this protein. Protein Expression and Purification. 2013; 92 (1): 1–8. https://doi.org/10.1016/j.pep.2013.08.012

19. Kukharkina O. V., Borisova O. A. Schmallenberg disease (review). Proceedings of the Federal Centre for Animal Health. 2014; 12: 86–102. https://elibrary.ru/sysyff (in Russ.)

20. Sprygin A. V., Kononov A. V., Babin Yu. Yu., Mishchenko V. A. Schmallenberg virus disease: molecular biology and clinical presentation (review). Agricultural Biology. 2012; (6): 24–34. https://doi.org/10.15389/agrobiology.2012.6.24rus (in Russ.)

21. Lunicin A. V., Salnikov N. I., Nikitina E. G., Tcybanov S. Zh., Kolbasov D. V. A new disease of ruminants in Europe – disease Schmallenberg. Veterinariya. 2012; (4): 23–26. https://elibrary.ru/ownuxr (in Russ.)

22. Varela M., Schnettler E., Caporale M., Murgia C., Barry G., McFarlane M., et al. Schmallenberg virus pathogenesis, tropism and interaction with the innate immune system of the host. PLoS Pathogens. 2013; 9 (1): e1003133. https://doi.org/10.1371/journal.ppat.1003133

23. Collins Á. B., Doherty M. L., Barrett D. J., Mee J. F. Schmallenberg virus: a systematic international literature review (2011–2019) from an Irish perspective. Irish Veterinary Journal. 2019; 72:9. https://doi.org/10.1186/s13620-019-0147-3

24. Fan K., Li Y., Chen Z., Fan L. GenRCA: a user-friendly rare codon analysis tool for comprehensive evaluation of codon usage preferences based on coding sequences in genomes. BMC Bioinformatics. 2024; 25 (1):309. https://doi.org/10.1186/s12859-024-05934-z

25. Okonechnikov K., Golosova O., Fursov M, the UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012; 28 (8): 1166–1167. https://doi.org/10.1093/bioinformatics/bts091

26. Elena C., Ravasi P., Castelli M. E., Peirú S., Menzella H. G. Expression of codon optimized genes in microbial systems: current industrial applications and perspectives. Frontiers in Microbiology. 2014; 5:21. https://doi.org/10.3389/fmicb.2014.00021

27. Menzella H. G. Comparison of two codon optimization strategies to enhance recombinant protein production in Escherichia coli. Microbial Cell Factories. 2011; 10:15. https://doi.org/10.1186/1475-2859-10-15


Review

For citations:


Tenitilov N.A., Yarygina N.A., Sprygin A.V. Recombinant antigens in serological diagnostics of transboundary and emerging bovine infections. Veterinary Science Today. 2025;14(4):372-382. (In Russ.) https://doi.org/10.29326/2304-196X-2025-14-4-372-382

Views: 57


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)