Preview

Veterinary Science Today

Advanced search

Validation and application of qPCR test kit for detection of Mycoplasma dispar DNA

https://doi.org/10.29326/2304-196X-2025-14-3-274-282

Contents

Scroll to:

Abstract

Introduction. Currently, Mycoplasma dispar is widely spread and circulating in livestock farms around the world, including in the Russian Federation. The implementation of a real-time polymerase chain reaction test kit for detecting Mycoplasma dispar DNA in veterinary practice is highly relevant, as this pathogen can cause respiratory diseases in cattle and contribute to calf mortality, leading to significant economic losses in livestock production.

Objective. To introduce a newly developed real-time polymerase chain reaction test kit Mycoplasma dispar DNA detection kit into veterinary practice and determine its major validation parameters.

Materials and methods. Mycoplasma dispar reference strain (ATCC No. 27140) was cultured in 1699 Revised Mycoplasma Medium recommended by the American Type Culture Collection. DNA was extracted using a commercial kit, real-time polymerase chain reaction was performed using pre-selected parameters. The major validation parameters of the test kit were determined: analytical sensitivity, analytical specificity, amplification efficiency, repeatability and reproducibility. Applicability of real-time polymerase chain reaction test kit for detection of Mycoplasma dispar DNA was demonstrated.

Results. The Mycoplasma dispar DNA detection test kit demonstrated an analytical sensitivity (detection limit) of 10 copies/μL (100 copies/reaction), 100% specificity (exclusive to Mycoplasma dispar DNA), 99.01% amplification efficiency, and an average repeatability coefficient of variation of 0.91%. Reproducibility coefficient of variation ranged from 0.66% to 1.26% across 5 replicates and was 0.91% across 15 replicates. The test kit was validated using 228 biological samples from cattle from 13 regions of the Russian Federation, while Mycoplasma dispar DNA was detected in 39.47% of the samples tested.

Conclusion. The developed Mycoplasma dispar DNA test kit has demonstrated high validation performance and is suitable for diagnosing bovine mycoplasmosis.

For citations:


Abed Alhussen M., Fedorova O.E., Krotova A.O., Byadovskaya O.P., Sprygin A.V. Validation and application of qPCR test kit for detection of Mycoplasma dispar DNA. Veterinary Science Today. 2025;14(3):274-282. https://doi.org/10.29326/2304-196X-2025-14-3-274-282

INTRODUCTION

Mycoplasma dispar is a globally prevalent pathogen responsible for respiratory diseases in cattle, particularly in calves. M. dispar infection typically manifests as mucopurulent inflammation of the upper respiratory tract with frequent lung involvement, resulting in substantial economic losses in cattle production [1][2][3].

Mycoplasma dispar, a member of the genus Mycoplasma (class Mollicutes), lacks a cell wall, is pleomorphic, and has a compact 803 kb genome with a low G + C composition (28.5–29.3 mol%) [4][5].

Mycoplasma dispar requires a specific medium to enable growth and its colonies do not show – especially during the early passages – the typical “fried-egg” appearance. In addition, M. dispar are not always inhibited by hyperimmune serum, making conventional identification difficult in the early stages [5]. M. dispar glucose fermentation aligns with its phylogenetic cluster (hominis group), but unlike some mycoplasmas, it lacks arginine hydrolysis. Tetrazolium reduction occurs under both oxygen conditions. The bacterium has no phosphatase activity [6][7][8]. M. dispar produces an outer capsule consisting of a polysaccharide identified as a polymer of galacturonic acid [9]. The capsule appears to be produced during infection in response to mammalian host cells, and may exert an inhibitory effect on the activity of bovine alveolar macrophages and prevent their activation [10].

It has been reported that mycoplasma can be inhibited by alveolar macrophages if anti-capsular polysaccharide antibodies are present [9].

Mycoplasma dispar was first isolated from the lungs of pneumonic calves in England in 1969. Then these mycoplasmas were reported from Denmark, Belgium, the Netherlands, France, Australia, the USA, Canada, Korea and Japan [8]. In Europe, M. dispar infection was reported from the UK, and recently from Brazil and Italy [11][12][13][14][15]. In the Russian Federation, testing of 1,186 biological samples collected from cattle with respiratory and/or reproductive diseases from 34 different regions during 2015–2018 revealed M. dispar DNA in 37.15% of samples by agarose gel electrophoresis of polymerase chain reaction (PCR) products [16].

Mycoplasma dispar is transmitted between animals through respiratory secretions and can be detected in the respiratory tracts of both healthy calves and those with pneumonia [3]. Mycoplasma infections, particularly when combined with other respiratory pathogens under suboptimal conditions, represent a significant threat to animal health and productivity in high-density livestock operations [17][18]. In the Netherlands, M. dispar was isolated from 92% of pneumonic calves and from only 40% of healthy calves [7][19]. In Denmark M. dispar was found in over half of calf lungs showing either fibrino-necrotising or suppurative bronchopneumonia [20]. Other bacterial pathogens, including Histophilus somni, Pasteurella multocida, Arcanobacterium pyogenes, and Mannheimia haemolytica, were co-detected with mycoplasmas. M. dispar is detected frequently from pneumonic calves in the UK, and is believed to be the cause of a severe pleuropneumonia similar to the WOAH (World Organization for Animal Health) listed contagious bovine pleuropneumonia [21].

Few detailed studies have been carried out to establish the exact role of M. dispar in bovine respiratory disease (BRD) which is a chronic condition affecting beef cattle in feedlots and dairy calves. It is estimated to cost the USA cattle industry alone over US $4 billion in production losses, treatment and prevention [21].

Calves affected by BRD are usually treated with antimicrobials even though some of these are not effective against mycoplasmas [22]. Consequently, there is a real danger of the emergence of resistance as a result of chronic therapies with multiple antimicrobials, which is already observed for the other BRD bacterial pathogens [23].

The pathogenicity mechanisms have been identified in M. dispar and include its ability to produce hydrogen peroxide and biofilm, both well-known virulence factors. Studies have shown that M. dispar is able to colonize the epithelial cells of the respiratory tract exerting cytostatic and even cytopathic effects on bronchial and bronchiole cells, potentially impairing the clearance of bacteria [9][21][24]. Furthermore, M. dispar has been shown to be immunosuppressive in the host [25]. For these reasons M. dispar is included with M. bovis amongst the agents that cause or exacerbate BRD [8][21]. M. dispar is causally associated with exudative bronchitis and interstitial pneumonia in calves, with transmission occurring primarily via airborne respiratory droplets and sustained close contact [26].

Mycoplasma dispar causes purple to red consolidation mainly in the cranioventral areas of the lung [27]. M. dispar were shown to be capable of causing a mild sub-clinical bronchiolitis with lymphoid cuffing in gnotobiotic calves [10]; occasional cases of mastitis were also reported [28]. Other authors report that M. dispar is frequently related to alveolitis, in which neutrophils, macrophages, and edema liquid aggregate in the alveolar wall and spaces [26][29]. Field cases of subclinical pneumonia from which M. dispar was isolated had similar lesions [30].

The genomic information of M. dispar in publicly available databases is limited. The genome succession of M. dispar reference strain ATCC 27140 was delivered in the GenBank in 2015. Based on the phylogenetic analysis of 16S rRNA gene sequence M. dispar was clustered with M. ovipneumoniae, M. flocculare and M. hyopneumoniae, isolated from sheep and goats [31].

Controlling mycoplasmosis effectively requires a multi-faceted approach that includes minimizing environmental stress, ensuring proper animal husbandry, and maintaining good air circulation within facilities. Measures to prevent infection of calves from adult animals are required [8].

Timely diagnosis is one of the key components in bovine mycoplasmosis control. Laboratory confirmation of M. dispar infection is clinically important, as this globally distributed pathogen significantly impacts livestock health and production [18][32][33][34].

Conventional identifying bovine mycoplasmas through isolation on nutrient media is a crucial first step, as it allows for detailed examination of their cultural, morphological, and biological characteristics. This method also enables the establishment of a clinical isolate bank, which can support future development of improved prevention, control, and eradication strategies for mycoplasmosis, as well as facilitate antimicrobial resistance monitoring [8][18][33][34]. However, it should also be noted that this method is laborious and requires 7–10 days for diagnosis [3][18][34].

While not widely used, serological tests like radial hemolysis, ELISA [35], and passive hemagglutination have been reported for detecting M. dispar antibodies [36][37]. The authors described that weak antibody presence against M. dispar in cattle, despite its surface-lung location, might be due to the relatively low sensitivity of the serological tests used, rather than the animal’s immune system failing to mount an adequate response [35].

While PCR has significantly improved mycoplasma detection, it was not until 2004 that a PCR method specific to the M. dispar genome was reported [38]. Both specific and universal oligonucleotides were utilized to detect single nucleotide polymorphisms in the 16S rRNA gene sequence. The PCR/DGGE technique (denaturing gradient gel electrophoresis) was also described, which can detect and identify more than 70 different mycoplasmas, including M. dispar [39][40].

Contemporary diagnostics can achieve high efficiency through real-time PCR (qPCR), enabling rapid and precise detection of specific mycoplasma genomic loci in biological samples [18][32][34][41].

The use of fluorescently labeled TaqMan probes that bind to a specific sequence within the amplified DNA region (the interprimer segment) significantly enhances the specificity of PCR-based assays. Real-time PCR, unlike traditional PCR, doesn’t require post-amplification handling of the sample, reducing the risk of contamination and leading to faster, more efficient analysis.

The incorporation of an internal control sample (ICS) in commercial qPCR assays ensures result reliability by detecting PCR inhibition, thereby preventing false-negative interpretations [42]. An important need in qPCR test kit development is incorporating ICSs to monitor both nucleic acid extraction and the subsequent amplification process [43][44][45][46].

It is also worth noting that, in accordance with the WOAH requirements, it is recommended to include ICS into each PCR test for quality control [47].

Tools for the molecular identification of mycoplasma genomes, including of M. dispar, enable not only to monitor the animal disease situation in domestic farms, but also to control both the import of animals and their use for production purposes [34][48].

Currently, there are no commercially available domestic qPCR test kits to detect M. dispar DNA in the Russian Federation, and therefore the development of a specific qPCR diagnostic test kit and its introduction into veterinary practice is an urgent task [34].

The purpose of this work was to determine the main validation characteristics of the qPCR test kit for detection of M. dispar DNA developed by the Federal Centre for Animal Health, and to introduce it into veterinary practice.

MATERIALS AND METHODS

Bacteria and viruses. The M. dispar reference strain (ATCC No. 27140), delivered from the collection of strains of microorganisms of the Federal Centre for Animal Health, and biological samples collected from cattle of various age groups (stabilized blood; nasal and tracheal swabs; pieces of lungs, trachea and lymph nodes; pleural fluid) were used.

To assess the analytical specificity of the developed test kit, the following bacterial strains were used: M. bovis ATCC No. 25523, M. bovigenitalium ATCC No. 19852, M. bovis Kaluga 2020, Mycoplasma mycoides subsp. mycoides SC (MmmSC) Madugri-8 DNA (Federal Research Center of Virology and Microbiology, Russia), Mycoplasma mycoides subsp. mycoides SC (MmmSC) “T1/44/ARRIAH”, and other bacterial and viral agents responsible for analogous diseases in cattle: Escherichia coli “EC-21”, Mannheimia haemolytica “No. 1412”, Pasteurella multocida “No. 1414”, M. bovigenitalium isolate, M. dispar isolate, M. bovis isolate, bovine parainfluenza 3 virus “VGNKI-4”, bovine respiratory syncytial virus “Vologda/2020”, bovine viral diarrhea virus “NADL-ARRIAH”.

Mycoplasma dispar culture. The M. dispar reference strain (ATCC No. 27140) was cultured on the 1699 Revised Mycoplasma Medium nutrient medium recommended by the American Type Culture Collection, which contained 7.5 g of brain heart infusion broth; 40.0 µL of 10× Hank’s Balanced Salts Solution; 10.0 µL of 0.25% phenol red solution; 200.0 µL of heat inactivated porcine serum; 100.0 µL of 5% lactalbumin hydrolysate in 1× phosphate buffer solution; 20.0 µL of yeast extract and 660.0 µL of distilled water. The bacteria were cultured in an incubator at (37 ± 0.5) °C and 5% CO2 for 5 days. After incubation, turbidity in test tubes and discoloration of the medium (yellowing) were observed, M. dispar-like colonies formed on a solid nutrient medium; M. dispar biological activity was determined by colony-forming unit counting (CFU/µL) [49][50].

DNA was extracted using a commercial Ampli Prime Ribosorb kit (Central Research Institute of Epidemiology, Rospotrebnadzor, Russia) in accordance with the manufacturer’s instruction.

Real-time PCR protocol. The reaction mixture for amplification per one reaction contained the following components: PCR-buffer-B for Taq DNA polymerase 10× (Syntol, Russia); 5 U/µL of SynTaq DNA polymerase with enzyme-inhibiting antibodies (Syntol, Russia); 25 mM of aqueous solution of magnesium chloride MgCl2 (Syntol, Russia); 100 mM of aqueous solutions of four deoxynucleoside triphosphates (dNTP): dATP, dGTP, dTTP, dCTP (a common mixture of dNTP is prepared and diluted with nuclease-free water to a concentration of 10 mM of each dNTP; Fermentas, Lithuania); direct primer (100 pmol/µL), reverse primer (100 pmol/µL) and a TaqMan probe (100 pmol/µL) to detect a region of the gene encoding M. dispar16S rRNA (Syntol, Russia); direct primer (100 pmol/µL), reverse primer (100 pmol/µL) and TaqMan probe (100 pmol/µL) for detection of artificially synthesized ICS (Syntol, Russia) [51]. The resulting volume of the reaction mixture was adjusted to 15 µL with deionized, nuclease-free water (Eurogen, Russia). After that, 15 µL of the reaction mixture and 10 µL of the DNA matrix of the tested samples were added to the prepared tubes. Amplification was performed in a Rotor-Gene real-time PCR cycler (QIAGEN, Germany).

A plasmid construct containing the oligonucleotide sequence of the genome region (with an initial concentration of 2 × 10⁷ copies/µL) and M. dispar genome specific region (target fragment) was used as a positive control sample.

Deionized, nuclease-free water (Eurogen, Russia) was used as a negative control sample (NCS) and as a negative PCR control.

Validation. The validation parameters of the test kit were determined according to the recommended method by S. A. Bustin et al. guidelines for publication of developed quantitative PCR protocols [52].

To assess the specificity of the developed qPCR, biological samples containing Mycoplasma DNA and viral and bacterial nucleic acids which can cause similar diseases in cattle were tested. The test kit sensitivity was assessed using known positive biological samples containing M. dispar DNA.

The limit of M. dispar DNA detection (analytical sensitivity) of the developed test kit was assessed using a positive control sample containing M. dispar DNA with an initial concentration of 2 × 10⁷ copies/µL, each dilution was tested in 5 replicates.

PCR amplification efficiency was assessed using serial 10-fold dilutions of a positive sample of biological material containing M. dispar DNA in 3 replicates and calculated according to the formula:

Е = (101/slope − 1) × 100%,

where slope is standard curve (plot of Ct vs. log10 input template concentration).

The data were statistically analyzed using Microsoft Excel, including calculations of mean values with standard deviations (± SD), regression analysis, and coefficients of variation. The coefficient of variation (CV) for reproducibility and repeatability should not exceed 10%.

Intermediate precision (reproducibility) was assessed by testing the same sample in 5 replicates in 3 independent qPCR runs (n = 15 total replicates).

RESULTS AND DISCUSSION

The Federal Centre for Animal Health developed and validated Russia’s first qPCR test kit for Mycoplasma dispar DNA detection, incorporating an ICS.

The use of ICS improve PCR reliability and accuracy, particularly by identifying reaction inhibition. The Laboratory Technology Committee of the American Association of Veterinary Laboratory Diagnosticians (AAVLD) has recommended to its membership that all new molecular assays being validated and implemented include an inhibition monitoring strategy based on internal validation for the host, target species, and sample matrix combination being tested [53].

The initial validation step involved identifying a temperature profile that optimizes both the sensitivity and amplification efficiency of the test kit.

The qPCR temperature-time profile was optimized using pre-established reaction component concentrations to achieve consistent threshold cycle (Ct) values. The results are given in Table 1.

Table 1

Threshold cycle (Ct) values of optimized real-time polymerase chain reaction temperature-time profile for M. dispar DNA detection (n = 3)

Stage

Temperature

Duration

Number of cycles

Mean value

Ct ± SD

Profile 1

Heating of the reaction mixture

95 °С

5 minutes

1

25.46 ± 0.37

Denaturation

95 °С

15 seconds

40

Primer annealing and elongation

60 °C

60 seconds (fluorescence measurement of Green/FAM, Red/Cy5)

Profile 2

Heating of the reaction mixture

95 °С

5 minutes

1

26.30 ± 0.86

Denaturation

95 °С

10 seconds

40

Primer annealing

60 °С

20 seconds (fluorescence measurement of Green/FAM, Red/Cy5)

Elongation

72 °С

20 seconds

Profile 3

Heating of the reaction mixture

95 °С

5 minutes

1

28.87 ± 0.15

Denaturation

95 °С

10 seconds

45

Primer annealing

58 °С

20 seconds (fluorescence measurement of Green/FAM, Red/Cy5)

Elongation

72 °С

20 seconds

The following qPCR temperature-time profile was considered optimal for M. dispar DNA detection: 5 minutes at 95 °C (heating of the reaction mixture), followed by 40 PCR cycles consisting of DNA denaturation for 15 seconds at 95 °C, primer annealing and cDNA elongation for 60 seconds at 60 °C.

Validation testing confirmed that the developed kit eliminates false-positive results when challenged with DNA from bovine respiratory disease-associated bacteria. It was shown that the test kit has 100% analytical specificity for M. dispar (Table 2), which is higher than demonstrated by J. B. W. J. Cornelissen et al., in which the specificity was 98.2% [54]. The oligonucleotides were verified using the NCBI BLAST database, confirming no significant homology with other Mycoplasma species and demonstrating specificity for the M. dispar genome.

Table 2

Specificity assessment of the developed real-time polymerase chain reaction kit for M. dispar DNA detection (n = 3)

Genetic material

Strain

qPCR result, Green/FAM

(M. dispar DNA)

qPCR result, Red/Cy5

(ICS DNA)

Escherichia coli

“EC-21”

neg.

+

Mannheimia haemolytica

“No. 1412”

neg.

+

Pasteurella multocida

“No. 1414”

neg.

+

Mycoplasma bovigenitalium

ATCC No. 19852

neg.

+

Mycoplasma bovigenitalium

isolate

neg.

+

Mycoplasma dispar

ATCC No. 27140

pos.

+

Mycoplasma dispar

isolate

pos.

+

Mycoplasma bovis

ATCC No. 25523

neg.

+

Mycoplasma bovis

“Kaluga 2020”

neg.

+

Mycoplasma bovis

isolate

neg.

+

Mycoplasma mycoides subsp. mycoides SC (MmmSC)

“T1/44/ARRIAH”

neg.

+

Mycoplasma mycoides subsp. mycoides SC (MmmSC)

Madugri-8

neg.

+

Bovine parainfluenza virus-3

“VGNKI-4”

neg.

+

Bovine respiratory syncytial virus

“Vologda/2020”

neg.

+

Bovine viral diarrhea virus

“NADL-ARRIAH”

neg.

+

Nuclease-free water

neg.

+

neg. – M. dispar DNA was not detected; pos. – M. dispar DNA was detected; “+” – ICS DNA was detected.

The amplification efficiency was evaluated using serial 10-fold dilutions of a positive sample containing M. dispar DNA. Based on the obtained Ct values for each dilution, the amplification efficiency (E) was 99.01%, which was more significant than the 97.49% efficiency demonstrated by J. B. W. J. Cornelissen et al. during the development of a single PCR [54]. Linear correlation value (R2) was 0.9832 (Fig. 1).

Fig. 1. Linear correlation of real-time polymerase chain reaction results for 10-fold dilutions of the M. dispar genome DNA

In-laboratory precision under reproducibility conditions was evaluated by examining how consistently measurements are obtained when varying personnel, time, and equipment. The tests were performed using biological material containing and not containing M. dispar DNA. Recent studies have shown that the results of M. dispar DNA detection using the developed test kit are fully consistent with the expected results and do not depend on time, personnel, or equipment.

Intermediate precision under reproducibility (repeatability) conditions was assessed by testing the same sample in five replicates in three independent qPCR runs (n = 15 total replicates).

The threshold cycle (Ct) mean value in three PCR runs ranged from 26.74 to 27.36 with a standard deviation (SD) of 0.18 to 0.34. The coefficient of variation (CV) of 0.91% is well within the acceptable range of 10%. When summing up the results of three qPCR runs, the mean Ct value and the standard deviation was 27.03 and ± 0.25, respectively (Table 3).

Table 3

Variability of real-time polymerase chain reaction Ct values for M. dispar (n = 15)

Run

Replicate

Ct value

Mean Ct value

Standard deviation

(SD)

Coefficient of variation

(Cv, %)

I

1

27.09

26.74

0.22

0.82

2

26.76

3

26.51

4

26.68

5

26.64

II

1

27.41

27.36

0.18

0.66

2

27.50

3

27.54

4

27.13

5

27.20

III

1

26.58

27.00

0.34

1.26

2

26.93

3

27.32

4

27.38

5

26.77

Total

27.03

0.25

0.91

At the next stage, the detection limit (analytical sensitivity) was determined for M. dispar DNA isolated from serial 10-fold dilutions of an artificially synthesized DNA sequence corresponding to a specific region of the M. dispar genome, starting at an initial concentration of 2 × 10⁷ DNA copies/µL. Each dilution was tested in five replicates (Table 4).

Table 4

Analytical sensitivity (detection limit) of the real-time polymerase chain reaction test kit for M. dispar DNA detection

Matrix

M. dispar DNA detection, replicate

Matching the expected result,%

1

2

3

4

5

2 × 10⁷ DNA copies/µL

pos.

pos.

pos.

pos.

pos.

100

2 × 10⁶ DNA copies/µL

pos.

pos.

pos.

pos.

pos.

100

2 × 10⁵ DNA copies/µL

pos.

pos.

pos.

pos.

pos.

100

2 × 10⁴ DNA copies/µL

pos.

pos.

pos.

pos.

pos.

100

2 × 10³ DNA copies/µL

pos.

pos.

pos.

pos.

pos.

100

2 × 10² DNA copies/µL

pos.

pos.

pos.

pos.

pos.

100

20 DNA copies/µL

pos.

pos.

pos.

pos.

pos.

100

10 DNA copies/µL

pos.

pos.

pos.

pos.

pos.

100

5 DNA copies/µL

neg.

pos.

neg.

pos.

neg.

40

pos. – M. dispar DNA was detected; neg. – M. dispar DNA was not detected.

It has been established that for the developed qPCR-based test kit, the detection limit of M. dispar DNA is 10 DNA copies/μL (100 DNA copies/reaction).

In studies conducted by L. McAuliffe et al., DGGE of the 16S ribosomal DNA PCR product was used to differentiate 32 mycoplasma species. This method is a valuable tool for quickly identifying various Mycoplasma species, especially when specific PCR tests are not available [39][40]. However, artifacts introduced during PCR or the subsequent DGGE analysis lead to skewed results when this method is used for quantitative analysis of α-diversity or relative operational taxonomic unit abundance [55].

While some researchers have used conventional PCR to detect M. dispar [31][38][56], qPCR offers faster and more accurate results without the need for gel electrophoresis [57].

Analysis and interpretation of the results. Both fluorescence channels (Green/FAM and Red/Cy5) shared identical qPCR parameters: dynamic background adjustment, slope correction, 10% emission cutoff, linear scale quantification, and a detection limit of 0.05 (Fig. 2). Results are interpreted according to whether fluorescence curves intersect the threshold line, corresponding to the presence or absence of threshold cycles (Ct) in both Green/FAM and Red/Cy5 channels. These data are displayed in the corresponding amplification plots and result tables generated by the thermocycler.

Fig. 2. Fluorescence curves: A – Green/FAM channel (M. dispar DNA); B – Red/Cy5 channel (internal control sample DNA)

The result of qPCR is considered reliable provided that the correct results are obtained for the negative PCR control, the NCS (extraction control) and M. dispar positive control. The control requirements are described in Table 5.

Table 5

Requirements for the control results following amplification

Control

Threshold cycle (Ct) value

Green/FAM channel

Red/Cy5 channel

Negative PCR control

absent

absent

Negative control sample NCS

absent

≤ 35

M. dispar positive control

≤ 35

≤ 35

The results for the tested samples should be interpreted in accordance with Table 6.

Table 6

Interpretation of the results for the tested samples

Threshold cycle (Ct) value

Result

Green/FAM channel (M. dispar DNA)

Red/Cy5 channel (ICS)

absent

≤ 35

M. dispar DNA not detected

≤ 35

detected or absent

M. dispar DNA detected

> 35

≤ 35

inconclusive¹

absent or > 35

absent or > 35

not reliable²

¹ re-test relevant samples, starting from the DNA extraction stage, if the test yields the same results, it can be assumed that M. dispar DNA has been detected in the original sample;
² re-test the relevant samples, starting from the DNA extraction stage.

Using the developed test kit, 228 biological samples collected from cattle with respiratory clinical signs were tested, which were received by the Federal Centre for Animal Health, in 2024 from 13 regions of the Russian Federation. The results are given in Table 7.

Table 7

Identification and detection of M. dispar genome in biological samples using the developed test kit in 2024

Region

Swabs (nasal, tracheal)

Pathological samples (stabilized blood, pieces of lungs, trachea and lymph nodes, pleural fluid)

Total number of samples

Number of positive samples

Total number of samples

Number of positive samples

Voronezh Oblast

52

0

Vologda Oblast

2

0

Vladimir Oblast

12

10

24

4

Moscow Oblast

22

8

2

2

Nizhny Novgorod Oblast

10

0

10

4

Republic of Chuvashia

10

10

Krasnodar Krai

 

2

0

Republic of Tatarstan

24

24

2

2

Ryazan Oblast

10

0

4

4

Yaroslavl Oblast

4

0

Republic of Mari El

2

2

Orenburg Oblast

6

2

8

6

Samara Oblast

16

6

6

6

Total

110

60

118

30

“–“ – samples from this region were not received for testing.

It was established that M. dispar DNA detection rate in biological samples was 39.47%. The findings demonstrate widespread prevalence of M. dispar among cattle populations across Russian farms in 2024.

CONCLUSION

This study established the validation parameters and demonstrated the utility of the “MIC-DISPAR qPCR” kit for detecting Mycoplasma dispar DNA via real-time polymerase chain reaction. The assay exhibited high analytical specificity and sensitivity, with excellent repeatability and reproducibility across various test conditions (coefficient of variation range: 0.66–0.91%) The amplification efficiency (E) was 99.01%, and the detection limit was 100 DNA copies/reaction. These validation parameters represent essential criteria for assessing polymerase chain reaction test kit reliability.

Inclusion of an exogenous internal controls example prevents false-negative result interpretation. Using the developed test kit M. dispar DNA was detected in 39.47% of the tested samples received from different regions of the Russian Federation by the Federal Centre for Animal Health, in 2024, which indicates the relevance of M. dispar diagnostic tests. In this case, the internal controls example serves as an indicator of the extraction stage and the presence of possible inhibitors.

While the test’s validation framework could be extended to include related mycoplasmas (e.g., M. bovirhinis, M. flocculare, and M. ovipneumoniae), current data lack evidence of these pathogens circulating in cattle and small ruminants within the Russian Federation. M. ovipneumoniae is the primary cause of mycoplasmal pneumonia in sheep and goats, and the risk of its transmission to cattle is minimal [58][59][60]. The demonstrated high specificity of the oligonucleotides (confirmed by BLAST analysis) supports the test kit’s suitability for M. dispar diagnostics in cattle.

Thus, this test kit can serve as an effective tool in veterinary laboratory practice for the detection of M. dispar DNA in biological samples from cattle.

Contribution of the authors: All authors contributed equally to formulating the research objectives and aims, conducting literature reviews and data collection; designing and performing laboratory tests, analyzing and systematizing research data; interpreting results and drawing conclusions and preparing and writing the manuscript.

Вклад авторов: Авторы внесли равнозначный вклад при определении целей и задач исследования, сборе литературных данных; при разработке и проведении лабораторных исследований, анализе и систематизации полученных данных; при обобщении, интерпретации результатов и оформлении основных результатов исследования в виде статьи.

References

1. Tortorelli G., Carrillo Gaeta N., Mendonça Ribeiro B. L., Miranda Marques L., Timenetsky J., Gregory L. Evaluation of Mollicutes microorganisms in respiratory disease of cattle and their relationship to clinical signs. Journal of Veterinary Internal Medicine. 2017; 31 (4): 1215–1220. https://doi.org/10.1111/jvim.14721

2. Chen S., Hao H., Yan X., LiuY., Chu Y. Genome-wide analysis of Mycoplasma dispar provides insights into putative virulence factors and phylogenetic relationships. G3: Genes, Genomes, Genetics. 2019; 9 (2): 317–325. https://doi.org/10.1534/g3.118.200941

3. Abed Alhussen M., Kirpichenko V. V., Yatsentyuk S. P., Nesterov A. A., Byadovskaya O. P., Zhbanova T. V., Sprygin A. V. Mycoplasma bovis, M. bovigenitalium and M. dispar as bovine pathogens: brief characteristics of the pathogens (review). Agricultural Biology. 2021; 56 (2): 245–260. https://doi.org/10.15389/agrobiology.2021.2.245eng

4. Herrmann R. Genome structure and organization. In: Mycoplasmas: Molecular Biology and Pathogenesis. Ed. by J. Maniloff. Washington: American Society for Microbiology; 1992; 157–168.

5. Ter Laak E. A., Noordergraaf J. H. An improved method for the identification of Mycoplasma dispar. Veterinary Microbiology. 1987; 14 (1): 25–31. https://doi.org/10.1016/0378-1135(87)90049-6

6. Nicholas R. A. J., Khan L. A., Houshaymi B., Miles R. J., Ayling R. D., Hotzel H., Sachse K. Close genetic and phenotypic relatedness between Mycoplasma ovine/caprine serogroup 11 and Mycoplasma bovigenitalium. Systematic and Applied Microbiology. 2002; 25 (3): 396–402. https://doi.org/10.1078/0723-2020-00121

7. Ter Laak E. A., Noordergraaf J. H., Dieltjes R. P. J. W. Prevalence of mycoplasmas in the respiratory tracts of pneumonic calves. Journal of Veterinary Medicine, Series B. 1992; 39 (1–10): 553–562. https://doi.org/10.1111/j.1439-0450.1992.tb01205.x

8. Nicholas R., Ayling R., McAuliffe L. Mycoplasma diseases of ruminants. Wallingford: CABI; 2008. 239 p. https://doi.org/10.1079/9780851990125.0000

9. Almeida R. A., Rosenbusch R. F. Capsulelike surface material of Mycoplasma dispar induced by in vitro growth in culture with bovine cells is antigenically related to similar structures expressed in vivo. Infection and Immunity. 1991; 59 (9): 3119–3125. https://doi.org/10.1128/iai.59.9.3119-3125.1991

10. Howard C. J., Gourlay R. N., Taylor G. Immunity to Mycoplasma infections of the calf respiratory tract. Advances in Experimental Medicine and Biology. 1981; 137: 711–726. https://pubmed.ncbi.nlm.nih.gov/7331951

11. Ayling R. D., Bashiruddin S. E., Nicholas R. A. J. Mycoplasma species and related organisms isolated from ruminants in Britain between 1990 and 2000. Veterinary Record. 2004; 155 (14): 413–416. https://doi.org/10.1136/vr.155.14.413

12. França Dias de Oliveira B. A., Carrillo Gaeta N., Mendonça Ribeiro B. L., Reyes Alemán M. A., Miranda Marques L., Timenetsky J., et al. Determination of bacterial aetiologic factor on tracheobronchial lavage in relation to clinical signs of bovine respiratory disease. Journal of Medical Microbiology. 2016; 65 (10): 1137–1142. https://doi.org/10.1099/jmm.0.000345

13. Bottinelli M., Passamonti F., Rampacci E., Stefanetti V., Pochiero L., Coletti M., et al. DNA microarray assay and real-time PCR as useful tools for studying the respiratory tract Mycoplasma populations in young dairy calves. Journal of Medical Microbiology. 2017; 66 (9): 1342–1349. https://doi.org/10.1099/jmm.0.000571

14. Mosier D. Review of BRD pathogenesis: the old and the new. Animal Health Research Reviews. 2014; 15 (2): 166–168. https://doi.org/10.1017/S1466252314000176

15. Taylor G. Immunity to Mycoplasma infections of the respiratory tract: a review. Journal of the Royal Society of Medicine. 1979; 72 (7): 520–526. https://doi.org/10.1177/014107687907200711

16. Abed Alhussen M., Nesterov A. А., Kirpichenko V. V., Yatsentyuk S. P., Sprygin A. V., Byadovskaya O. P., Kononov A. V. Bovine mycoplasmosis occurrence on livestock farms in the Russian Federation for 2015–2018. Veterinary Science Today. 2020; (2): 102–108. https://doi.org/10.29326/2304-196X-2020-2-33-102-108

17. Bernier Gosselin V., Francoz D., Babkine M., Desrochers A., Nichols S., Doré E, et al. A retrospective study of 29 cases of otitis media/interna in dairy calves. The Canadian Veterinary Journal. 2012; 53 (9): 957–962. https://pubmed.ncbi.nlm.nih.gov/23450859

18. Parker A. M., Sheehy P. A., Hazelton M. S., Bosward K. L., House J. K. A review of Mycoplasma diagnostics in cattle. Journal of Veterinary Internal Medicine. 2018; 32 (3): 1241–1252. https://doi.org/10.1111/jvim.15135

19. Ter Laak E. A., Noordergraaf J. H., Verschure M. H. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro. Antimicrobial Agents and Chemotherapy. 1993; 37 (2): 317–321. https://doi.org/10.1128/AAC.37.2.317

20. Tegtmeier C., Uttenthal A. A., Friis N. F., Jensen N. E., Jensen H. E. Pathological and microbiological studies on pneumonic lungs from Danish calves. Journal of Veterinary Medicine, Series B. 1999; 46 (10): 693–700. https://doi.org/10.1046/j.1439-0450.1999.00301.x

21. Bottinelli M., Merenda M., Gastaldelli M., Picchi M., Stefani E., Nicholas R. A. J., Catania S. The pathogen Mycoplasma dispar shows high minimum inhibitory concentrations for antimicrobials commonly used for bovine respiratory disease. Antibiotics. 2020; 9 (8):460. https://doi.org/10.3390/antibiotics9080460

22. DeDonder K. D., Apley M. D. A literature review of antimicrobial resistance in Pathogens associated with bovine respiratory disease. Animal Health Research Reviews. 2015; 16 (2): 125–134. https://doi.org/10.1017/S146625231500016X

23. Anholt R. M., Klima C., Allan N., Matheson-Bird H., Schatz C., Ajitkumar P., et al. Antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex in Alberta, Canada. Frontiers in Veterinary Science. 2017; (4):207. https://doi.org/10.3389/FVETS.2017.00207

24. Dabo S. M., Taylor J. D., Confer A. W. Pasteurella multocida and bovine respiratory disease. Animal Health Research Reviews. 2007; 8 (2): 129–150. https://doi.org/10.1017/S1466252307001399

25. Almeida R. A., Wannemuehler M. J., Rosenbusch R. F. Interaction of Mycoplasma dispar with bovine alveolar macrophages. Infection and Immunity. 1992; 60 (7): 2914–2919. https://doi.org/10.1128/iai.60.7.2914-2919.1992

26. Friis N. F. Mycoplasma dispar as a causative agent in pneumonia of calves. Acta Veterinaria Scandinavica. 1980; 21: 34–42. https://doi.org/10.1186/bf03546898

27. Ross R. F. Mycoplasma – animal pathogens. In: Rapid Diagnosis of Mycoplasmas. Ed. by I. Kahane, A. Adoni. Boston: Springer; 1993; 69–109. https://doi.org/10.1007/978-1-4615-2478-6_7

28. Jasper D. E. Bovine mycoplasmal mastitis. Journal of the American Veterinary Medical Association. 1979; 175 (10): 1072–1074. https://doi.org/10.2460/javma.1979.175.10.1072

29. Gourlay R. N., Howard C. J., Thomas L. H., Wyld S. G. Pathogenicity of some Mycoplasma and Acholeplasma species in the lungs of gnotobiotic calves. Research in Veterinary Science. 1979; 27 (2): 233–237. https://doi.org/10.1016/S0034-5288(18)32836-4

30. George T. D., Horsfall N., Sullivan N. D. A subclinical pneumonia of calves associated with Mycoplasma dispar. Australian Veterinary Journal. 1973; 49 (12): 580–586. https://doi.org/10.1111/j.1751-0813.1973.tb06738.x

31. Shilan Faqe Muhammad Salih. Detection of Mycoplasma dispar in bovine respiratory disease by polymerase chain reaction assay in Sulaimaniyah city. Iraqi Journal of Agricultural Sciences. 2024; 55 (2): 703–710. https://doi.org/10.36103/p6042k98

32. Andersson A.-M., Aspán A., Wisselink H. J., Smid B., Ridley A., Pelkonen S., et al. A European inter-laboratory trial to evaluate the performance of three serological methods for diagnosis of Mycoplasma bovis infection in cattle using latent class analysis. BMC Veterinary Research. 2019; 15:369. https://doi.org/10.1186/s12917-019-2117-0

33. Dudek K., Nicholas R. A. J., Szacawa E., Bednarek D. Mycoplasma bovis infections – occurrence, diagnosis and control. Pathogens. 2020; 9 (8):640. https://doi.org/10.3390/pathogens9080640

34. Abed Alhussen M. Molecular and biological methods for bovine mycoplasmosis diagnostics: Author’s thesis for degree of Cand. Sci. (Veterinary Medicine). Vladimir: Federal Centre for Animal Health; 2023. 194 p. (in Russ.)

35. Howard C. J. Mycoplasmas and bovine respiratory disease: studies related to pathogenicity and the immune response – a selective review. Yale Journal of Biology and Medicine. 1983; 56 (5–6): 789–797. https://pubmed.ncbi.nlm.nih.gov/6382831

36. Martin S. W., Bateman K. G., Shewen P. E., Rosendal S., Bohac J. E. The frequency, distribution and effects of antibodies, to seven putative respiratory pathogens, on respiratory disease and weight gain in feedlot calves in Ontario. Canadian Journal of Veterinary Research. 1989; 53 (3): 355–362. https://pubmed.ncbi.nlm.nih.gov/2766158

37. Martin S. W., Bateman K. G., Shewen P. E., Rosendal S., Bohac J. G., Thorburn M. A group level analysis of the associations between antibodies to seven putative pathogens and respiratory disease and weight gain in Ontario feedlot calves. Canadian Journal of Veterinary Research. 1990; 54 (3): 337–342. https://pubmed.ncbi.nlm.nih.gov/2165846

38. Miles K., McAuliffe L., Ayling R. D., Nicholas R. A. J. Rapid detection of Mycoplasma dispar and M. bovirhinis using allele specific polymerase chain reaction protocols. FEMS Microbiology Letters. 2004; 241 (1): 103–107. https://doi.org/10.1016/j.femsle.2004.10.010

39. McAuliffe L., Ellis R. J., Lawes J. R., Ayling R. D., Nicholas R. A. J. 16S rDNA PCR and denaturing gradient gel electrophoresis; a single generic test for detecting and differentiating Mycoplasma species. Journal of Medical Microbiology. 2005; 54 (8): 731–739. https://doi.org/10.1099/jmm.0.46058-0

40. McAuliffe L., Ellis R. J., Ayling R. D., Nicholas R. A. J. Differentiation of Mycoplasma species by 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis fingerprinting. Journal of Clinical Microbiology. 2003; 41 (10): 4844–4847. https://doi.org/10.1128/JCM.41.10.4844-4847.2003

41. Baird S. C., Carman J., Dinsmore R. P., Walker R. L., Collins J. K. Detection and identification of Mycoplasma from bovine mastitis infections using a nested polymerase chain reaction. Journal of Veterinary Diagnostic Investigation. 1999; 11 (5): 432–435. https://doi.org/10.1177/104063879901100507

42. Moalic P.-Y., Gesbert F., Kempf I. Utility of an internal control for evaluation of a Mycoplasmameleagridis PCR test. Veterinary Microbiology. 1998; 61 (1–2): 41–49. https://doi.org/10.1016/S0378-1135(98)00173-4

43. Maaroufi Y., de Bruyne J.-M., Duchateau V., Scheen R., Crokaert F. Development of a multiple internal control for clinical diagnostic real-time amplification assays. FEMS Immunology and Medical Microbiology. 2006; 48 (2): 183–191. https://doi.org/10.1111/j.1574-695X.2006.00125.x

44. Hymas W., Stevenson J., Taggart E. W., Hillyard D. Use of lyophilized standards for the calibration of a newly developed real time PCR assay for human herpes type six (HHV6) variants A and B. Journal of Virological Methods. 2005; 128 (1–2): 143–150. https://doi.org/10.1016/j.jviromet.2005.05.003

45. Dingle K. E., Crook D., Jeffery K. Stable and noncompetitive RNA internal control for routine clinical diagnostic reverse transcription-PCR. Journal of Clinical Microbiology. 2004; 42 (3): 1003–1011. https://doi.org/10.1128/JCM.42.3.1003-1011.2004

46. Stöcher M., Leb V., Berg J. A convenient approach to the generation of multiple internal control DNA for a panel of real-time PCR assays. Journal of Virological Methods. 2003; 108 (1): 1–8. https://doi.org/10.1016/S0166-0934(02)00266-5

47. OIE Quality Standard and Guidelines for Veterinary Laboratories: Infectious Diseases. 2nd ed. 2008. 70 p.

48. Frey J., Nicolet J. Molecular identification and epidemiology of animal mycoplasmas. Wiener Klinische Wochenschrift. 1997; 109 (14–15): 600–603. https://pubmed.ncbi.nlm.nih.gov/9286067

49. Abed Alhussen M., Nesterov А. А., Sprygin А. V., Shumilova I. N., Bryantseva M. S., Byadovskaya О. P. Optimization of medium composition and study of growth stages of Mycoplasma bovis “Kaluga 2020”isolate. Veterinary Science Today. 2022; 11 (3): 262–267. https://doi.org/10.29326/2304-196X-2022-11-3-262-267

50. Hwang M.-H., Damte D., Cho M.-H., KimY.-H., Park S.-C. Optimization of culture media of pathogenic Mycoplasma hyopneumoniae by a response surface methodology. Journal of Veterinary Science. 2010; 11 (4): 327–332. https://doi.org/10.4142/jvs.2010.11.4.327

51. Morozova E. O., Krotova A. O., Sadchikova A. S., Tenitilov N. A., Byadovskaya O. P., Igolkin A. S., et al. Methodical recommendations on preparation of exogenous internal control sample for real-time PCR to detect microorganism DNA: approved by the Federal Centre for Animal Health 13.10.2023 No. 81-23. Vladimir: Federal Centre for Animal Health; 2023. 32 p. (in Russ.)

52. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry. 2009; 55 (4): 611–622. https://doi.org/10.1373/clinchem.2008.112797

53. Yan L., Toohey-Kurth K. L., Crossley B. M., Bai J., Glaser A. L., Tallmadge R. L., Goodman L. B. Inhibition monitoring in veterinary molecular testing. Journal of Veterinary Diagnostic Investigation. 2020; 32 (6): 758–766. https://doi.org/10.1177/1040638719889315

54. Cornelissen J. B. W. J., de Bree F. M., van der Wal F. J., Kooi E. A., Koene M. G. J., Bossers A., et al. Mycoplasma detection by triplex real-time PCR in bronchoalveolar lavage fluid from bovine respiratory disease complex cases. BMC Veterinary Research. 2017; 13:97. https://doi.org/10.1186/s12917-017-1023-6

55. Neilson J. W., Jordan F. L., Maier R. M. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. Journal of Microbiological Methods. 2013; 92 (3): 256–263. https://doi.org/10.1016/j.mimet.2012.12.021

56. Marques L. M., Buzinhani M., Yamaguti M., Oliveira R. C., Ferreira J. B., Mettifogo E., Timenetsky J. Use of a polymerase chain reaction for detection of Mycoplasma dispar in the nasal mucus of calves. Journal of Veterinary Diagnostic Investigation. 2007; 19 (1): 103–106. https://doi.org/10.1177/104063870701900118

57. Zhang G., Brown E. W., González-Escalona N. Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Applied and Environmental Microbiology. 2011; 77 (18): 6495–6501. https://doi.org/10.1128/AEM.00520-11

58. Deeney A. S., Collins R., Ridley A. M. Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005–2019. BMC Veterinary Research. 2021; 17:325. https://doi.org/10.1186/s12917-021-03037-y

59. Chen J., Wang S., Dong D., Zhang Z., Huang Y., Zhang Y. Isolation and characterization of Mycoplasma ovipneumoniae infecting goats with pneumonia in Anhui Province, China. Life. 2024; 14 (2):218. https://doi.org/10.3390/life14020218

60. Wolfe L. L., Diamond B., Spraker T. R., Sirochman M. A., Walsh D. P., Machin C. M., et al. A bighorn sheep die-off in southern Colorado involving a Pasteurellaceae strain that may have originated from syntopic cattle. Journal of Wildlife Diseases. 2010; 46 (4): 1262–1268. https://doi.org/10.7589/0090-3558-46.4.1262


About the Authors

M. Abed Alhussen
Federal Centre for Animal Health
Russian Federation

Mohammad Abed Alhussen - Cand. Sci. (Veterinary Medicine), Junior Researcher, Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



O. E. Fedorova
Federal Centre for Animal Health
Russian Federation

Olga E. Fedorova - Leading Biologist, Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



A. O. Krotova
Federal Centre for Animal Health
Russian Federation

Alena O. Krotova - Leading Biologist, Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



O. P. Byadovskaya
Federal Centre for Animal Health
Russian Federation

Olga P. Byadovskaya - Cand. Sci. (Biology), Head of Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



A. V. Sprygin
Federal Centre for Animal Health
Russian Federation

Alexander V. Sprygin - Dr. Sci. (Biology), Senior Researcher, Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



Review

For citations:


Abed Alhussen M., Fedorova O.E., Krotova A.O., Byadovskaya O.P., Sprygin A.V. Validation and application of qPCR test kit for detection of Mycoplasma dispar DNA. Veterinary Science Today. 2025;14(3):274-282. https://doi.org/10.29326/2304-196X-2025-14-3-274-282

Views: 876


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)