Prospects for the use of Bacillus anthracis toxin in cancer therapy
https://doi.org/10.29326/2304-196X-2022-11-4-375-381
Abstract
Cancer is one of the major causes of death in pet animals and humans worldwide. The contraindications and side effects associated with conventional cancer therapies heighten the importance of research aimed at finding new ways to combat cancer. One of the promising methods for the treatment of oncological diseases is the use of components of bacterial toxins, in particular the toxins of Bacillus anthracis, the causative agent of anthrax. Lethal factor is the main virulence factor of the anthrax pathogen, which is a zinc-dependent metalloprotease, the substrate for which is intracellular MAPK signaling pathways widely present in cancer cells. This review focuses on discussing the experience of foreign researchers in the application of Bacillus anthracis lethal factor in cancer therapy. The paper presents data from the studies that characterize the structure and functions of the lethal factor, reflect the results of its application on cancer cells both as a part of anthrax toxin and as a separate unit, reveal its therapeutic potential. The analysis of literature demonstrated good prospects for the potential use of the lethal factor to combat such types of cancer as liver, lung, colon, breast, pancreatic, ovarian, prostate, stomach and nervous system cancers. However, despite the impressive results, further in-depth research is needed in this area concerning selection of optimum doses of the lethal factor, determination of sensitivity of different types of cancer to it, investigation of its effects on other body tissues and interaction with the immune system during therapy.
About the Authors
A. P. RodionovRussian Federation
Alexander P. Rodionov, Junior Researcher, Laboratory for Collection of Strains of Microorganisms
Kazan
S. V. Ivanova
Russian Federation
Svetlana V. Ivanova, Candidate of Science (Biology), Leading Researcher, Laboratory of Viral Anthropozoonoses
Kazan
E. A. Artemeva
Russian Federation
Elena A. Artemeva, Candidate of Science (Veterinary Medicine), Head of Laboratory for Collection of Strains of Microorganisms
Kazan
L. A. Melnikova
Russian Federation
Lilia A. Melnikova, Candidate of Science (Veterinary Medicine), Associate Professor, Leading Researcher, Laboratory for Collection of Strains of Microorganisms
Kazan
References
1. Maksimov S. M., Khankhasykov S. P. Oncological pathology as the cause of death of dogs and cats in the city of Ussuriysk. Vestnik IrGSHA. 2022; 1 (108): 118–126. DOI: 10.51215/1999-3765-2022-108-118-126. (in Russ.)
2. Tikhenko A. S., Khankhasykov S. P. Oncological pathology as a cause of the death of dogs and cats in the Ikutsk city. Vestnik of Buryat State Academy of Agriculture named after V. Philippov. 2021; 4 (65): 95–101. DOI: 10.34655/bgsha.2021.65.4.013. (in Russ.)
3. Gorinsky V. I., Salautin V. V., Pudovkin N. A., Salautina S. E. Analysis of the spread of oncological diseases of domestic unproductive animals in the administrative districts of the city of Volgograd. Agrarian Scientific Journal. 2022; (1): 51–54. DOI: 10.28983/asj.y2022i1pp51-54. (in Russ.)
4. Sung H., Ferlay J., Siegel R. L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021; 71 (3): 209–249. DOI: 10.3322/caac.21660.
5. Khandia R., Pattnaik B., Rajukumar K., Pateriya A., Bhatia S., Murugkar H., et al. Anti-proliferative role of recombinant lethal toxin of Bacillus anthracis on primary mammary ductal carcinoma cells revealing its therapeutic potential. Oncotarget. 2017; 8 (22): 35835–35847. DOI: 10.18632/oncotarget.16214.
6. Pimentel A. A., Felibertt P., Sojo F., Colman L., Mayora A., Silva M. L., et al. The marine sponge toxin agelasine B increases the intracellular Ca2+ concentration and induces apoptosis in human breast cancer cells (MCF-7). Cancer Chemother. Pharmacol. 2012; 69 (1): 71–83. DOI: 10.1007/s00280-011-1677-x.
7. Dhama K., Chakraborty S., Wani M. Y., Verma A. K., Deb R., Tiwari R., Kapoor S. Novel and emerging therapies safeguarding health of humans and their companion animals: a review. Pak. J. Biol. Sci. 2013; 16 (3): 101–111. DOI: 10.3923/pjbs.2013.101.111.
8. Dhama K., Mani S., Chakraborty S., Tiwari R., Kumar A., Selvaraj P., Rai R. B. Herbal remedies to combat cancers in humans and animals – a review. Int. J. Curr. Res. 2013; 5 (07): 1908–1919.
9. Dhama K., Latheef S. K., Munjal A. K., Khandia R., Samad H. A., Iqbal H. M., Joshi S. K. Probiotics in curing allergic and inflammatory conditions – research progress and futuristic vision. Recent Pat. Inflamm. Allergy Drug Discov. 2016; 10 (2): 105–118. DOI: 10.2174/1872213X10666161226162229.
10. He Z. M., Zhang P. H., Li X., Zhang J. R., Zhu J. J. A targeted DNAzyme-nanocomposite probe equipped with built-in Zn2+ arsenal for combined treatment of gene regulation and drug delivery. Sci. Rep. 2016; 6:22737. DOI: 10.1038/srep22737.
11. Polito L., Djemil A., Bortolotti M. Plant toxin-based immunotoxins for cancer therapy: a short overview. Biomedicines. 2016; 4 (2):12. DOI: 10.3390/biomedicines4020012.
12. Mohanty I., Arunvikram K., Behera D., Milton A. A. P., Elaiyaraja G., Rajesh G., Dhama K. Immunomodulatory and therapeutic potential of zootoxins (venom and toxins) on the way towards designing and developing novel drugs/medicines: an overview. Int. J. Pharmacol. 2016; 12 (2): 126–135. DOI: 10.3923/ijp.2016.126.135.
13. Grenda T., Grenda A., Krawczyk P., Kwiatek K. Botulinum toxin in cancer therapy-current perspectives and limitations. Appl. Microbiol. Biotechnol. 2022; 106 (2): 485–495. DOI: 10.1007/s00253-021-11741-w.
14. Masilamani A. P., Fischer A., Schultze-Seemann S., Kuckuck I., Wolf I., Dressler F. F., et al. Epidermal growth factor based targeted toxin for the treatment of bladder cancer. Anticancer Res. 2021; 41 (8): 3741–3746. DOI: 10.21873/anticanres.15165.
15. Trivanović D., Pavelić K., Peršurić Ž. Fighting cancer with bacteria and their toxins. Int. J. Mol. Sci. 2021; 22 (23):12980. DOI: 10.3390/ijms222312980.
16. Zhuo W., Tao G., Zhang L., Chen Z. Vector-mediated selective expression of lethal factor, a toxic element of Bacillus anthracis, damages A549 cells via inhibition of MAPK and AKT pathways. Int. J. Med. Sci. 2013; 10 (3): 292–298. DOI: 10.7150/ijms.5570.
17. Rodionov A. P., Artemeva E. A., Melnikova L. A., Kosarev M. A., Ivanova S. V. Features of anthrax natural foci and Bacillus anthracis ecology. Veterinary Science Today. 2021; (2): 151–158. DOI: 10.29326/7304-196X-7021-2-37-151-158.
18. Ryazanova A. G., Gerasimenko D. K., Buravtseva N. P., Mezentsev V. M., Logvin F. V., Golovinskaya T. M., et al. Application of geoinformation technologies for assessment of the epizootiological and epidemiological situation on anthrax in the Volgograd Region. Problems of Particularly Dangerous Infections. 2021; 4: 112–119. DOI: 10.21055/0370-1069-2021-4-112-119. (in Russ.)
19. Ivanova S. V., Rodionov A. P., Melnikova L. A. Monitoring the potential hazards of anthrax outbreaks. Hippology and veterinary. 2021; 1 (39): 93–100. eLIBRARY ID: 44665504. (in Russ.)
20. Bodart J. F., Chopra A., Liang X., Duesbery N. Anthrax, MEK and cancer. Cell Cycle. 2002; 1 (1): 10–15. PMID: 12429903.
21. Maize K. M., Kurbanov E. K., De La Mora-Rey T., Geders T. W., Hwang D. J., Walters M. A., et al. Anthrax toxin lethal factor domain 3 is highly mobile and responsive to ligand binding. Acta Crystallogr. D Biol. Crystallogr. 2014; 70 (Pt 11): 2813–2822. DOI: 10.1107/S1399004714018161.
22. Rodionov A. P., Ivanova S. V., Melnikova L. A., Evstifeev V. V. Modern understanding of pathogenesis and immunogenesis of anthrax. Legal regulation in veterinary medicine. 2021; (2): 30–37. eLIBRARY ID: 46196527. (in Russ.)
23. Liu S., Moayeri M., Leppla S. H. Anthrax lethal and edema toxins in anthrax pathogenesis. Trends Microbiol. 2014; 22 (6): 317–325. DOI: 10.1016/j.tim.2014.02.012.
24. Duesbery N. S., Webb C. P., Leppla S. H., Gordon V. M., Klimpel K. R., Copeland T. D., et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science. 1998; 280 (5364): 734–737. DOI: 10.1126/science.280.5364.734.
25. Vitale G., Pellizzari R., Recchi C., Napolitani G., Mock M., Montecucco C. Anthrax lethal factor cleaves the N-terminus of MAPKKs and induces tyrosine/threonine phosphorylation of MAPKs in cultured macrophages. Biochem. Biophys. Res. Commun. 1998; 248 (3): 706–711. DOI: 10.1006/bbrc.1998.9040.
26. Duesbery N. S., Resau J., Webb C. P., Koochekpour S., Koo H. M., Leppla S. H., Vande Woude G. F. Suppression of ras-mediated transformation and inhibition of tumor growth and angiogenesis by anthrax lethal factor, a proteolytic inhibitor of multiple MEK pathways. Proc. Natl. Acad. Sci. USA. 2001; 98 (7): 4089–4094. DOI: 10.1073/pnas.061031898.
27. Koo H. M., VanBrocklin M., McWilliams M. J., Leppla S. H., Duesbery N. S., Vande Woude G. F. Apoptosis and melanogenesis in human melanoma cells induced by anthrax lethal factor inactivation of mitogen-activated protein kinase kinase. Proc. Natl. Acad. Sci. USA. 2002; 99 (5): 3052–3057. DOI: 10.1073/pnas.052707699.
28. Abi-Habib R. J., Singh R., Leppla S. H., Greene J. J., Ding Y., Berghuis B., et al. Systemic anthrax lethal toxin therapy produces regressions of subcutaneous human melanoma tumors in athymic nude mice. Clin. Cancer Res. 2006; 12 (24): 7437–7443. DOI: 10.1158/1078-0432.CCR-06-2019.
29. Ding Y., Boguslawski E. A., Berghuis B. D., Young J. J., Zhang Z., Hardy K., et al. Mitogen-activated protein kinase kinase signaling promotes growth and vascularization of fibrosarkoma. Mol. Cancer Ther. 2008; 7 (3): 648–658. DOI: 10.1158/1535-7163.MST-07-2229.
30. Huang D., Ding Y., Luo W. M., Bender S., Qian C. N., Kort E., et al. Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res. 2008; 68 (1): 81–88. DOI: 10.1158/0008-5472.CAN-07-5311.
31. Johnson M., Koukoulis G., Kochhar K., Kubo C., Nakamura T., Iyer A. Selective tumorigenesis in non-parenchymal liver epithelial cell lines by hepatocyte growth factor transfection. Cancer Letters. 1995; 96 (1): 37–48. DOI: 10.1016/0304-3835(95)03915-j.
32. Kochhar K. S., Johnson M. E., Volpert O., Iyer A. P. Evidence for autocrine basis of transformation in NIH-3T3 cells transfected with met/HGF receptor gene. Growth Factors. 1995; 12 (4): 303–313. DOI: 10.3109/08977199509028968.
Review
For citations:
Rodionov A.P., Ivanova S.V., Artemeva E.A., Melnikova L.A. Prospects for the use of Bacillus anthracis toxin in cancer therapy. Veterinary Science Today. 2022;11(4):375-381. https://doi.org/10.29326/2304-196X-2022-11-4-375-381