Salmonella bacteria in farm animal feeds. Review
https://doi.org/10.29326/2304-196X-2022-11-4-290-295
Abstract
This review provides a data analysis of the test results for farm animal feeds. The analysis is based on the articles published from 1955 to 2020. It was found that the overall pooled prevalence estimates of Salmonella was 0.14: with a prevalence of 0.18 in raw feed components, 0.09 – in finished feed and 0.08 – in swabs from the surfaces of feed production equipment. The probability of contaminating raw animal feed components with Salmonella is 3.9 times higher than that for raw vegetable feeds. There is a tendency for Salmonella to be less detected in raw feed components; however, in finished feeds Salmonella detectability has remained unchanged for decades. The Salmonella prevalence in samples taken from environmental objects and surfaces of feed mill production equipment was 0.08. The risk of Salmonella detection at feed mills in the pre-heat treatment zone was 1.5 times higher than the risk of detection in the post-heat treatment zone. The analysis of Salmonella serovariants revealed that S. senftenberg, S. montevideo, S. typhimurium, S. anatum, S. havana, S. enteritidis, S. cerro are isolated everywhere. The S. salford serotype is found only on the African continent. A research into antimicrobial resistance of Salmonella isolates demonstrated resistance to such medicinalproducts as ceftriaxone, carbopenem and imipenem; and full genome sequencing showed at least one antibiotic resistance gene in 40% of Salmonella isolates detected at pig feed production plants.
About the Authors
N. B. ShadrovaRussian Federation
Natalya B. Shadrova, Candidate of Science (Biology), Head of Department for Microbiological Testing
Vladimir
O. V. Pruntova
Russian Federation
Olga V. Pruntova, Doctor of Science (Biology), Professor, Chief Researcher, Information and Analysis Centre
Vladimir
G. S. Skitovich
Russian Federation
Galina S. Skitovich, Candidate of Science (Biology), Head of the Vladimir Testing Centre
Vladimir
О. А. Akulich
Russian Federation
Olga A. Akulich, Deputy Head of the Department of State
Veterinary Surveillance
Vladimir
References
1. Crump J. A., Griffin P. M., Angulo F. J. Bacterial contamination of animal feed and its relationship to human foodborne illness. Clin. Infect. Dis. 2002; 35 (7): 859–865. DOI: 10.1086/342885.
2. Sapkota A. R., Lefferts L. Y., McKenzie S., Walker P. What do we feed to food production animals? A review of animal feed ingredients and their potential impacts on human health. Environ. Health Perspect. 2007; 115 (5): 663–670. DOI: 101289/ehp.9760.
3. Parker E. M., Edwards L. J., Mollenkopf D. F., Ballash G. A., Wittum T. E., Parker A. J. Salmonella monitoring programs in Australian feed mills: a retrospective analysis. Aust. Vet. J. 2019; 97 (9): 336–342. DOI: 10.1111/avj.12851.
4. Selim S. A., Cullor J. S. Number of viable bacteria and presumptive antibiotic residues in milk fed to calves on commercial dairies. J. Am. Vet. Med. Assoc. 1997; 211 (8): 1029–1035. PMID: 9343549.
5. Shariat N. W., Larsen B. R., Schaeffer Ch., Richardson K. E. Animal feed contains diverse populations of Salmonella. J. Appl. Microbiol. 2022; 132 (6): 4476–4485. DOI: 10.1111/jam.15525.
6. O’Connor A. M., Denagamage T., Sargeant J. M., Rajić A., McKean J. Feeding management practices and feed characteristics associated with Salmonella prevalence in live and slaughtered market-weight finisher swine: a systematic review and summation of evidence from 1950 to 2005. Prev. Vet. Med. 2008; 87 (3–4): 213–228. DOI: 10.1016/j.prevetmed.2008.06.017.
7. The Control of Hazards of Animal Health and Public Health Importance in Animal Feed. In: World Organisation for Animal Health. Terrestrial Animal Health Code. 2022; Vol. 1, Chapter 6.4. Режим доступа: https://www.woah.org/fileadmin/Home/eng/Health_standards/tahc/current/chapitre_control_feed_hazard.pdf.
8. FAO/WHO Codex Alimentarius. CAC/GL 80-2013 Guidelines on the Application of Risk Assessment for Feed. 2013. Режим доступа: http://www.fao.org/feed-safety/resources/resources-details/fr/c/1054051.
9. Parker E. M., Parker A. J., Short G., O’Connor A. M., Wittum T. E. Salmonella detection in commercially prepared livestock feed and the raw ingredients and equipment used to manufacture the feed: A systematic review and meta-analysis. Prev. Vet. Med. 2022; 198:105546. DOI: 10.1016/j.prevetmed.2021.105546.
10. Davies R. H., Wray C. Distribution of Salmonella contamination in ten animal feedmills. Vet. Microbiol. 1997; 57 (2–3): 159–169. DOI: 10.1016/s0378-1135(97)00114-4.
11. McChesney D. G., Kaplan G., Gardner P. FDA survey determines Salmonella contamination. Feedstuffs. 1995; 67: 20–23.
12. Food and Drug Administration. Current Good Manufacturing Practice and Hazard Analysis and Risk-based Preventive Controls for Food for Animals. No. FDA-2011-N-0922. Режим доступа: https://www.fda.gov/media/86635/download.
13. American Feed Industry Association. Safe Feed/Safe Food Certification Program. Режим доступа: https://www.afia.org/issues/feed-foodsafety/safe-feed-safe-food-certification.
14. Leiva A., Granados-Chinchilla F., Redondo-Solano M., Arrieta-González M., Pineda-Salazar E., Molina A. Characterization of the animal by-product meal industry in Costa Rica: Manufacturing practices through the production chain and food safety. Poult. Sci. 2018; 97 (6): 2159–2169. DOI: 10.3382/ps/pey058.
15. Li X., Bethune L. A., Jia Y., Lovell R. A., Proescholdt T. A., Benz S. A., et al. Surveillance of Salmonella prevalence in animal feeds and characterization of the Salmonella isolates by serotyping and antimicrobial susceptibility. Foodborne Pathog. Dis. 2012; 9 (8): 692–698. DOI: 10.1089/fpd.2011.1083.
16. Davies R. H., Wales A. D. Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. J. Appl. Microbiol. 2010; 109 (4): 1430–1440. DOI: 10.1111/j.1365-2672.2010.04767.x.
17. Davies R. H., Wales A. D. Salmonella contamination of cereal ingredients for animal feeds. Vet. Microbiol. 2013; 166 (3–4): 543–549. DOI: 10.1016/j.vetmic.2013.07.003.
18. Durand A. M., Giesecke W. H., Barnard M. L., Walt M. L., Steyn H. C. Salmonella isolated from feeds and feed ingredients during the period 1982–1988: animal and public health implications. Onderstepoort J. Vet. Res. 1990; 57 (3): 175–181. PMID: 2234864.
19. Hsieh Y. C., Lee K. M., Poole T., Runyon M., Jones B., Herrman T. J. Detection and isolation of Salmonella spp. in animal feeds from 2007–2011. Int. J. Regul. Sci. 2014; 2 (1): 14–27.
20. Jiang X. Prevalence and characterization of Salmonella in animal meals collected from rendering operations. J. Food Prot. 2016; 79 (6): 1026–1031. DOI: 10.4315/0362-028X.JFP-15-537.
21. Kukier E., Kwiatek K. Microbiological quality of feed materials used in Poland. Bull. Vet. Inst. Pulawy. 2011; 55: 709–715. DOI: 10.2478/bvip-2013-0093.
22. Kutay H. C., Dümen E., Keser O., Bilgin Aş., Ergin S., Kocabağli N. Prevalence and antimicrobial susceptibility of Salmonella in rendered animal products used in poultry feed in Turkey. Kafkas Univ. Vet. Fak. Derg. 2016; 22: 909–916. DOI: 10.9775/kvfd.2016.15657.
23. MacKenzie M. A., Bains B. Dissemination of Salmonella serotypes from raw feed ingredients to chicken carcases. Poult. Sci. 1976; 55 (3): 957–960. DOI: 10.3382/ps.0550957.
24. Parker A. J., Parkes R. W., Overend D., Hepworth G. Prevalence of Salmonella spp. in feed mills following the introduction of Feedsafe. In: Australasian Milling Conference (April 14–16, 2008). Sydney; 2008; 162–165.
25. Shilangale R. P., Di Giannatale E., Chimwamurombe P. M., Kaaya G. P. Prevalence and antimicrobial resistance pattern of Salmonella in animal feed produced in Namibia. Vet. Ital. 2012; 48 (2): 125–132. PMID: 22718330.
26. Torres G. J., Piquer F. J, Algarra L., de Frutos C., Sobrino O. J. The prevalence of Salmonella enterica in Spanish feed mills and potential feed-related risk factors for contamination. Prev. Vet. Med. 2011; 98 (2–3): 81–87. DOI: 10.1016/j.prevetmed.2010.11.009.
27. Turcu A. A. Characterisation of Salmonella isolates from animal feed additives. Lucrări Științifice. 2011; 54 (4): 50–53.
28. Wierup M., Kristoffersen T. Prevention of Salmonella contamination of finished soybean meal used for animal feed by a Norwegian production plant despite frequent Salmonella contamination of raw soy beans, 1994–2012. Acta Vet. Scand. 2014; 56 (1):41. DOI: 10.1186/s13028-014-0041-7.
29. Malmqvist M., Jacobsson K. G., Häggblom P., Cerenius F., Sjöland L., Gunnarsson A. Salmonella isolated from animals and feedstuffs in Sweden during 1988–1992. Acta Vet. Scand. 1995; 36 (1): 21–39. DOI: 10.1186/ BF03547700.
30. Møretrø T., Midtgaard E. S., Nesse L. L., Langsrud S. Susceptibility of Salmonella isolated from fish feed factories to disinfectants and air-drying at surfaces. Vet. Microbiol. 2003; 94 (3): 207–217. DOI: 10.1016/s0378-1135(03)00105-6.
31. Davi M. A., Hancock D. D., Rice D. H., Call D. R., DiGiacomo R., Samadpour M., Besser T. E. Feedstuffs as a vehicle of cattle exposure to Escherichia coli O157:H7 and Salmonella enterica. Vet. Microbiol. 2003; 95 (3): 199–210. DOI: 10.1016/s0378-1135(03)00159-7.
32. Nesse L. L., Refsum T., Heir E., Nordby K., Vardund T., Holstad G. Molecular epidemiology of Salmonella spp. isolates from gulls, fish-meal factories, feed factories, animals and humans in Norway based on pulsed-field gel electrophoresis. Epidemiol. Infect. 2005; 133 (1): 53–58. DOI: 10.1017/s0950268804003279.
33. Maciorowski K. G., Herrera P., Jones F. T., Pillai S. D., Ricke S. C. Cultural and immunological detection methods for Salmonella spp. in animal feeds – a review. Vet. Res. Commun. 2006; 30 (2): 127–137. DOI: 10.1007/s11259-006-3221-8.
34. Habimana O., Møretrø T., Langsrud S., Vestby L. K., Nesse L. L., Heir E. Micro ecosystems from feed industry surfaces: a survival and biofilm study of Salmonella versus host resident flora strains. BMC Vet. Res. 2010; 6:48. DOI: 10.1186/1746-6148-6-48.
35. Jones F. T. A review of practical Salmonella control measures in animal feed. J. Appl. Poult. Res. 2011; 20 (1): 102–113. DOI: 10.3382/japr.2010-00281.
36. Jones F. T., Richardson K. E. Salmonella in commercially manufactured feeds. Poult. Sci. 2004; 83 (3): 384–391. DOI: 10.1093/ps/83.3.384.
37. Magossi G., Cernicchiaro N., Dritz S., Houser T., Woodworth J., Jones C., Trinetta V. Evaluation of Salmonella presence in selected United States feed mills. Microbiologyopen. 2019; 8 (5):e00711. DOI: 10.1002/mbo3.711.
38. Magossi G., Lambertini E., Noll L., Bai J., Jones C., Nagaraja T. G., et al. Potential risk-factors affecting Salmonella sp. and Escherichia coli occurrence and distribution in Midwestern United States swine feed mills. J. Appl. Microbiol. 2020; 129 (6): 1744–1750. DOI: 10.1111/jam.14758.
39. Whyte P., McGill K., Collins J. D. A survey of the prevalence of Salmonella and other enteric pathogens in a commercial poultry feed mill. Journal of Food Safety. 2003; 23 (1): 13–24. DOI: 10.1111/j.1745-4565.2003.tb00348.x.
40. Vestby L. K., Møretrø T., Langsrud S., Heir E., Nesse L. L. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal – and feed factories. BMC Vet. Res 2009; 5:20. DOI: 10.1186/1746-6148-5-20.
41. Lories B., Belpaire T. E. R., Yssel A., Ramon H., Steenackers H. P. Agaric acid reduces Salmonella biofilm formation by inhibiting flagellar motility. Biofilm. 2020; 2:100022. DOI: 10.1016/j.bioflm.2020.100022.
42. Velmourougane K., Prasanna R., Saxena A. K. Agriculturally important microbial biofilms: present status and future prospects. J. Basic Microbiol. 2017; 57 (7): 548–573. DOI: 10.1002/jobm.201700046.
43. Magwedere K., Rauff D., De Klerk G., Keddy K. H., Dziva F. Incidence of nontyphoidal Salmonella in food-producing animals, animal feed, and the associated environment in South Africa, 2012–2014. Clin. Infect. Dis. 2015; 61 (Suppl 4): S283–289. DOI: 10.1093/cid/civ663.
44. Ferrari R. G., Rosario D. K. A., Cunha-Neto A., Mano S. B., Figueiredo E. E. S., Conte-Junior C. A. Worldwide epidemiology of Salmonella serovars in animal-based foods: a meta-analysis. Appl. Environ. Microbiol. 2019; 85 (14):e00591-19. DOI: 10.1128/AEM.00591-19.
45. National Notifiable Diseases Surveillance System (NNDSS) public dataset – Salmonella (2009–2021). Режим доступа: https://www.health.gov.au/resources/publications/nndss-public-dataset-salmonella.
46. Tate H., Folster J. P., Hsu C. H., Chen J., Hoffmann M., Li C., et al. Comparative analysis of extended-spectrum-β-lactamase CTX-M-65-producing Salmonella enterica serovar Infantis isolates from humans, food animals, and retail chickens in the United States. Antimicrob. Agents Chemother. 2017; 61 (7):e00488-417. DOI: 10.1128/AAC.00488-17.
47. Hsieh Y. C., Poole T. L., Runyon M., Hume M., Herrman T. J. Prevalence of nontyphoidal Salmonella and Salmonella strains with conjugative antimicrobial-resistant serovars contaminating animal feed in Texas. J. Food Prot. 2016; 79 (2): 194–204. DOI: 10.4315/0362-028X.JFP-15-163.
48. Ge B., LaFon P. C., Carter P. J., McDermott S. D., Abbott J., Glenn A. Retrospective analysis of Salmonella, Campylobacter, Escherichia coli, and Enterococcus in animal feed ingredients. Foodborne Pathog. Dis. 2013; 10 (8): 684–691. DOI: 10.1089/fpd.2012.1470.
49. Ge B., Domesle K. J., Gaines S. A., Lam C., Bodeis Jones S. M., Yang Q. Prevalence and antimicrobial susceptibility of indicator organisms Escherichia coli and Enterococcus spp. isolated from US animal food, 2005–2011. Microorganisms. 2020; 8 (7):1048. DOI: 10.3390/microorganisms8071048.
50. Agga G. E., Silva P. J., Martin R. S. Prevalence, serotypes, and antimicrobial resistance of Salmonella from mink feces and feed in the United States. Foodborne. Pathog. Dis. 2022; 19 (1): 45–55. DOI: 10.1089/fpd.2021.0037.
51. Su L. H., Chiu C. H., Chu C., Ou J. T. Antimicrobial resistance in nontyphoid Salmonella serotypes: a global challenge. Clin. Infect. Dis. 2004; 39 (4): 546–551. DOI: 10.1086/422726.
52. Okoli C., Ndujihe G., Ogbuewu I. Frequency of isolation of Salmonella from commercial poultry feeds and their anti-microbial resistance profiles, Imo State, Nigeria. Online J. Health Allied Sci. 2006; 5 (2):3. Режим доступа: http://www.ojhas.org/issue18/2006-2-3.htm.
53. Medalla F., Gu W., Friedman C. R., Judd M., Folster J., Griffin P. M., Hoekstra R. M. Increased incidence of antimicrobial-resistant nontyphoidal Salmonella infections, United States, 2004–2016. Emerg. Infect. Dis. 2021; 27 (6): 1662–1672. DOI: 10.3201/eid2706.204486.
54. Ogunrinu O. J., Norman K. N., Vinasco J., Levent G., Lawhon S. D., Fajt V. R., et al. Can the use of oldergeneration beta-lactam antibiotics in livestock production over-select for betalactamases of greatest consequence for human medicine? An in vitro experimental model. PLoS One. 2020; 15 (11):e0242195. DOI: 10.1371/journal.pone.0242195.
55. Infectious Diseases Society of America (IDSA), Spellberg B., Blaser M., Guidos R. J., Boucher H. W., Bradley J. S., et al. Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis. 2011; 52 (Suppl 5): S397–428. DOI: 10.1093/cid/cir153.
56. Trinetta V., Magossi G., Allard M. W., Tallent S. M., Brown E. W., Lomonaco S. Characterization of Salmonella enterica isolates from selected US swine feed mills by whole-genome sequencing. Foodborne Path. Dis. 2020; 17 (2): 126–136. DOI: 10.1089/fpd.2019.2701.
Review
For citations:
Shadrova N.B., Pruntova O.V., Skitovich G.S., Akulich О.А. Salmonella bacteria in farm animal feeds. Review. Veterinary Science Today. 2022;11(4):290-295. https://doi.org/10.29326/2304-196X-2022-11-4-290-295