Testing of chickens experimentally infected with A/H9N2 avian influenza virus isolates for their immune responses
https://doi.org/10.29326/2304-196X-2022-11-1-70-76
Abstract
Data on tests of chickens for their immune responses to infection with low pathogenic А/Н9N2 avian influenza virus isolates belonging to Y-280 and G1 genetic lines are presented in the paper. CD4⁺/CD8⁺ ratios were determined with flow cytometry for initial immune status examination and for detection of apparent immune system disorders. Quantitative analysis of peripheral blood lymphocyte subpopulations in chickens revealed changes characteristic of the immune suppression. Analysis of dynamics of T- and B-lymphocyte levels in blood of the infected chickens revealed decrease in relative T-lymphocyte counts and increase in relative B-lymphocyte counts. T-lymphocyte subpopulation composition expressed as CD4⁺/CD8⁺ ratio (%) changed after the infection: CD4⁺ cell proportion was found to decrease whereas CD8⁺ cell proportion increased. According to literature data, immune response activated by vaccination induces the reverse dynamics towards to increase in CD4⁺/CD8⁺ ratio. Both cell-mediated immunity and humoral immunity play role in development of the immune response in chickens infected with avian influenza viruses. Apparent humoral immune response was detected by serological tests of sera taken from chickens on day 14 after infection. Mean specific anti-A/H9N2 AIV antibody titre in all groups of test chickens infected with low pathogenic avian influenza virus isolates was higher than 6 log₂ . High level of specific antibodies to avian influenza virus was indicative of postvaccinal humoral immune response development.
About the Authors
O. S. OsipovaRussian Federation
Veterinarian, Reference Laboratory for Avian Viral Diseases,
Vladimir
M. A. Volkova
Russian Federation
Candidate of Science (Biology), Leading Researcher, Reference Laboratory for Avian Viral Diseases,
Vladimir
S. V. Frolov
Russian Federation
Candidate of Science (Veterinary Medicine), Leading Researcher, Laboratory for Avian Diseases Prevention,
Vladimir
D. B. Andreychuk
Russian Federation
Candidate of Science (Biology), Head of Reference Laboratory for Avian Viral Diseases,
Vladimir
I. A. Chvala
Russian Federation
Candidate of Science (Veterinary Medicine), Deputy Director for Research,
Vladimir
References
1. Avian influenza (infection with avian influenza viruses). In: OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. Chapter 3.3.4. Available at: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.03.04_AI.pdf.
2. Peacock T. H. P., James J., Sealy J. E., Iqbal M. A global perspective on H9N2 avian influenza virus. Viruses. 2019; 11 (7):620. DOI: 10.3390/v11070620.
3. Zhang P., Tang Y., Liu X., Liu W., Zhang X., Liu H., et al. A novel genotype H9N2 influenza virus possessing human H5N1 internal genomes has been circulating in poultry in eastern China since 1998. J. Virol. 2009; 83 (17): 8428–8438. DOI: 10.1128/JVI.00659-09.
4. Alexander D. J. Summary of avian influenza activity in Europe, Asia, Africa, and Australasia, 2002–2006. Avian Dis. 2007; 51 (1 Suppl): 161–166. DOI: 10.1637/7602-041306R.1.
5. Lee Y. J., Shin J. Y., Song M. S., Lee Y. M., Choi J. G., Lee E. K., et al. Continuing evolution of H9 influenza viruses in Korean poultry. Virology. 2007; 359 (2): 313–323. DOI: 10.1016/j.virol.2006.09.025.
6. Sun Y., Liu J. H9N2 influenza virus in China: a cause of concern. Protein Cell. 2015; 6 (1): 18–25. DOI: 10.1007/s13238-014-0111-7.
7. Li Y., Liu M., Sun Q., Zhang H., Zhang H., Jiang S., et al. Genotypic evolution and epidemiological characteristics of H9N2 influenza virus in Shandong Province, China. Poult. Sci. 2019; 98 (9): 3488–3495. DOI: 10.3382/ps/pez151.
8. Kishida N., Sakoda Y., Eto M., Sunaga Y., Kida H. Co-infection of Staphylococcus aureus or Haemophilus paragallinarum exacerbates H9N2 influenza A virus infection in chickens. Arch. Virol. 2004; 149 (11): 2095–2104. DOI: 10.1007/s00705-004-0372-1.
9. Mancini D. A., Mendonça R. M., Dias A. L., Mendonça R. Z., Pinto J. R. Co-infection between influenza virus and flagellated bacteria. Rev. Inst. Med. Trop. Sao Paulo. 2005; 47 (5): 275–280. DOI: 10.1590/s0036-46652005000500007.
10. Varkentin A. V., Volkov M. S., Irza V. N. Low pathogenic avian influenza induced with subtype H9 virus. Review of published literature. Proceedings of the Federal Centre for Animal Health. 2014; 12: 41–53. eLIBRARY ID: 22516488. (in Russ.)
11. Hassan K. E., Ali A., Shany S. A. S., El-Kady M. F. Experimental coinfection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens. Res. Vet. Sci. 2017; 115: 356–362. DOI: 10.1016/j.rvsc.2017.06.024.
12. Davidson I., Shkoda I., Golender N., Perk S., Lapin K., Khinich Y., Panshin A. Genetic characterization of HA gene of low pathogenic H9N2 influenza viruses isolated in Israel during 2006–2012 periods. Virus Genes. 2013; 46 (2): 255–263. DOI: 10.1007/s11262-012-0852-4.
13. Wang Y., Davidson I., Fouchier R., Spackman E. Antigenic cartography of H9 avian influenza virus and its application to vaccine selection. Avian Dis. 2016; 60 (1 Suppl): 218–225. DOI: 10.1637/11087-041015-Reg.
14. Hassan K. E., Shany S. A., Ali A., Dahshan A. H., El-Sawah A. A., ElKady M. F. Prevalence of avian respiratory viruses in broiler flocks in Egypt. Poult. Sci. 2016; 95 (6): 1271–1280. DOI: 10.3382/ps/pew068.
15. Astill J., Alkie T., Yitbarek A., Taha-Abdelaziz K., Bavananthasivam J., Nagy É., et al. Induction of immune response in chickens primed in ovo with an inactivated H9N2 avian influenza virus vaccine. BMC Res. Notes. 2018; 11 (1):428. DOI: 10.1186/s13104-018-3537-9.
16. Volkov M. S., Varkentin A. V., Irza V. N. Spread of low pathogenic avian influenza А/Н9N2 in the world and Russian Federation. Challenges of disease eradication. Veterinary Science Today. 2019; (3): 51–56. DOI: 10.29326/2304-196X-2019-3-30-51-56.
17. Julius M., Maroun C. R., Haughn L. Distinct roles for CD4 and CD8 as co-receptors in antigen receptor signalling. Immunol. Today. 1993; 14 (4): 177–183. DOI: 10.1016/0167-5699(93)90282-p.
18. Overgaard N. H., Jung J. W., Steptoe R. J., Wells J. W. CD4+/CD8+ double-positive T cells: more than just a developmental stage? J. Leukoc. Biol. 2015; 97 (1): 31–38. DOI: 10.1189/jlb.1RU0814-382.
19. Kwon J. S., Lee H. J., Lee D. H., Lee Y. J., Mo I. P., Nahm S. S., et al. Immune responses and pathogenesis in immunocompromised chickens in response to infection with the H9N2 low pathogenic avian influenza virus. Virus Res. 2008; 133 (2): 187–194. DOI: 10.1016/j.virusres.2007.12.019.
20. Suarez D. L., Schultz-Cherry S. Immunology of avian influenza virus: a review. Dev. Comp. Immunol. 2000; 24 (2–3): 269–283. DOI: 10.1016/s0145-305x(99)00078-6.
21. Hao X., Li S., Chen L., Dong M., Wang J., Hu J., et al. Establishing a multicolor flow cytometry to characterize cellular immune response in chickens following H7N9 avian influenza virus infection. Viruses. 2020; 12 (12):1396. DOI: 10.3390/v12121396.
22. Dai M., Li S., Keyi Shi, Sun H., Zhao L., Deshui Yu, et al. Comparative analysis of key immune protection factors in H9N2 avian influenza viruses infected and immunized specific pathogen-free chicken. Poult. Sci. 2021; 100 (1): 39–46. DOI: 10.1016/j.psj.2020.09.080.
23. Xue M., Shi X., Zhao Y., Cui H., Hu S., Cui X., Wang Y. Effects of reticuloendotheliosis virus infection on cytokine production in SPF chickens. PLoS One. 2013; 8 (12):e83918. DOI: 10.1371/journal.pone.0083918.
24. Yang S., Li G., Zhao Z., Huang Z., Fu J., Song M., et al. Taishan Pinus massoniana pollen polysaccharides enhance immune responses in chickens infected by avian leukosis virus subgroup B. Immunol. Invest. 2018; 47 (5): 443–456. DOI: 10.1080/08820139.2018.1435689.
25. Fu L., Wang X., Zhai J., Qi W., Jing L., Ge Y., et al. Changes in apoptosis, proliferation and T lymphocyte subtype on thymic cells of SPF chickens infected with reticuloendotheliosis virus. Mol. Immunol. 2019; 111: 87–94. DOI: 10.1016/j.molimm.2019.04.003.
26. Dai M., Li S., Shi K., Liao J., Sun H., Liao M. Systematic identification of host immune key factors influencing viral infection in PBL of ALV-J infected SPF chicken. Viruses. 2020; 12 (1):114. DOI: 10.3390/v12010114.
27. Meditsinskie laboratornye tekhnologii: rukovodstvo po klinicheskoi laboratornoi diagnostike = Medical laboratory techniques: Guidelines for clinical laboratory diagnostics. Ed. by А. I. Karpishchenko. 3rd edition, revised and supplemented. Moscow: GEOTAR-Media; 2013; Vol. 2: 274– 314. (in Russ.)
28. Yang Y., Dong M., Hao X., Qin A., Shang S. Revisiting cellular immune response to oncogenic Marek’s disease virus: the rising of avian T-cell immunity. Cell. Mol. Life Sci. 2020; 77 (16): 3103–3116. DOI: 10.1007/s00018-020-03477-z.
29. Dai M., Xu C., Chen W., Liao M. Progress on chicken T cell immunity to viruses. Cell. Mol. Life Sci. 2019; 76 (14): 2779–2788. DOI: 10.1007/s00018- 019-03117-1.
30. Liu A. L., Li Y. F., Qi W., Ma X. L., Yu K. X., Huang B., et al. Comparative analysis of selected innate immune-related genes following infection of immortal DF-1 cells with highly pathogenic (H5N1) and low pathogenic (H9N2) avian influenza viruses. Virus Genes. 2015; 50 (2): 189–199. DOI: 10.1007/s11262-014-1151-z.
Review
For citations:
Osipova O.S., Volkova M.A., Frolov S.V., Andreychuk D.B., Chvala I.A. Testing of chickens experimentally infected with A/H9N2 avian influenza virus isolates for their immune responses. Veterinary Science Today. 2022;11(1):70-76. https://doi.org/10.29326/2304-196X-2022-11-1-70-76