Comparative analysis of intestinal microbiome of local cattle and Aberdeen Angus cattle imported to Kazakhstan
https://doi.org/10.29326/2304-196X-2022-11-1-53-60
Abstract
Animal microbiome plays a significant role in all the vital body processes. Studying the microbiome is essential for gaining a detailed insight into the interactions among microorganisms inhabiting a certain organ and their relationship with macroorganism cells. Evaluating the state of animal microbial community and its function can provide an invaluable assistance in seeking new strategies to improve feed efficiency and maintain cattle health. The aim of the study was to compare the taxonomic structure of the intestinal microbiome of Aberdeen Angus cattle imported to Kazakhstan with that of local breed cows using next generation sequencing technology. The tests of fecal samples allowed for determination of the complete microbial composition of animal intestinal contents, while leaving out the preliminary stage of microbiological cultivation using nutrient media. The results of 16S metagenomic analysis showed that Firmicutes and Proteobacteria were predominant bacterial taxons at the phylum level in the intestinal microbiome in both groups of animals, with their numbers being roughly the same. At the bacterial familylevel, the number of Clostridiaceae was a little higher in Aberdeen Angus cows (19.7%) than in the local breed cattle (15.4%). The representatives of the families Bacteroidaceae, Peptococcaceae, Ruminococcaceae and Coriobacteriaceae prevailed in the gut microbial community of local cattle. These microorganisms are involved in the synthesis of vitamins, they stimulate the immune function of the body, normalize digestion, improve nutrient utilization and thus contribute to body weight gain in animals. Small numbers (0.5%) of bacteria of the family Prevotellaceae were detected only in the local breed cows demonstrating high body weight gain. The microbiome of the local cattle was characterized by a considerable diversity at the genus level: the total number of taxons amounted to 65, whereas in Aberdeen Angus cattle it was 40. It was found that the intestinal microbiome of local breed cattle includes less methanogens and more acetogens.
About the Authors
A. T. DaugaliyevaKazakhstan
Candidate of Science (Veterinary Medicine), Senior Researcher,
Almaty
S. T. Daugaliyeva
Kazakhstan
Candidateof Science (Veterinary Medicine), Leading Researcher,
Almaty
M. A. Kineev
Kazakhstan
Doctor of Agricultural Science, Professor, Academician of the NAS of the Republic of Kazakhstan, Chief Researcher,
Almaty
B. S. Aryngaziyev
Kazakhstan
Candidate of Agricultural Science, Senior Researcher,
Almaty
A. I. Sembaeva
Kazakhstan
Master, Researcher,
Almaty
T. A. Lavrentieva
Kazakhstan
Bachelor, Researcher,
Almaty
References
1. Carberry C. A., Kenny D. A., Han S., McCabe M. S., Waters S. M. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl. Environ. Microbiol. 2012; 78 (14): 4949–4958. DOI: 10.1128/AEM.07759-11.
2. Rufener W. H. Jr., Nelson W. O., Wolin M. J. Maintenance of the rumen microbial population in continuous culture. Appl. Microbiol. 1963; 11 (3): 196–201. DOI: 10.1128/am.11.3.196-201.1963.
3. Matthews C., Crispie F., Lewis E., Reid M., O’Toole P. W., Cotter P. D. The rumen microbiome: a crucial consideration when optimising milk and meat production and nitrogen utilisation efficiency. Gut. Microbes. 2019; 10 (2): 115–132. DOI: 10.1080/19490976.2018.1505176.
4. Pace N. R., Stahl D. A., Lane D. J., Olsen G. J. The Analysis of Natural Microbial Populations by Ribosomal RNA Sequences. In: Advances in Microbial Ecology. Eds. K. C. Marshall. Vol. 9. Boston: Springer; 1986; Chapter 1: 1–55. DOI: 10.1007/978-1-4757-0611-6_1.
5. Klindworth A., Pruesse E., Schweer T., Peplies J., Quast C., Horn M., Glöckner F. O. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 2013; 41 (1):e1. DOI: 10.1093/nar/gks808.
6. Mao S. Y., Zhang R. Y., Wang D. S., Zhu W. Y. Impact of subacute ruminal acidosis (SARA) adaptation on rumen microbiota in dairy cattle using pyrosequencing. Anaerobe. 2013; 24: 12–19. DOI: 10.1016/j.anaerobe.2013.08.003.
7. Li R. W., Connor E. E., Li C., Baldwin VI R. L., Sparks M. E. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ. Microbiol. 2012; 14 (1): 129–139. DOI: 10.1111/j.1462-2920.2011.02543.x.
8. Khafipour E., Li S., Tun H. M., Derakhshani H., Moossavi S., Plaizier J. C. Effects of grain feeding on microbiota in the digestive tract of cattle. Animal Frontiers. 2016; 6 (2): 13–19. DOI: 10.2527/af.2016-0018.
9. Shanks O. C., Kelty C. A., Archibeque S., Jenkins M., Newton R. J., McLellan S. L., et al. Community structures of fecal bacteria in cattle from different animal feeding operations. Appl. Environ. Microbiol. 2011; 77 (9): 2992–3001. DOI: 10.1128/AEM.02988-10.
10. Plaizier J. C., Li S., Tun H. M., Khafipour E. Nutritional models of experimentally-induced subacute ruminal acidosis (SARA) differ in their impact on rumen and hindgut bacterial communities in dairy cows. Front. Microbiol. 2017; 7:2128. DOI: 10.3389/fmicb.2016.02128.
11. Myer P. R. Bovine genome-microbiome interactions: metagenomic frontier for the selection of efficient productivity in cattle systems. mSystems. 2019; 4 (3):e00103-19. DOI: 10.1128/mSystems.00103-19.
12. Kim M., Park T., Yu Z. Metagenomic investigation of gastrointestinal microbiome in cattle. Asian-Australas. J. Anim. Sci. 2017; 30 (11): 1515–1528. DOI: 10.5713/ajas.17.0544.
13. Kelly W. J., Leahy S. C., Kamke J., Soni P., Koike S., Mackie R., et al. Occurrence and expression of genes encoding methyl-compound production in rumen bacteria. Anim. Microbiome. 2019; 1 (1):15. DOI: 10.1186/s42523-019-0016-0.
14. Wallace R. J., Sasson G., Garnsworthy P. C., Tapio I., Gregson E., Bani P., et al. A heritable subset of the core rumen microbiome dictates dairy cow productivity and emissions. Sci. Adv. 2019; 5 (7):eaav8391. DOI: 10.1126/sciadv.aav8391.
15. Bach A., López-García A., González-Recio O., Elcoso G., Fàbregas F., Chaucheyras-Durand F., Castex M. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J. Dairy Sci. 2019;102 (7): 6180–6198. DOI: 10.3168/jds.2018-16105.
16. Freetly H. C., Dickey A., Lindholm-Perry A. K., Thallman R. M., Keele J. W., Foote A. P., Wells J. E. Digestive tract microbiota of beef cattle that differed in feed efficiency. J. Anim. Sci. 2020; 98 (2):skaa008. DOI: 10.1093/jas/skaa008.
17. Liu J., Liu F., Cai W., Jia C., Bai Y., He Y., et al. Diet-induced changes in bacterial communities in the jejunum and their associations with bile acids in Angus beef cattle. Anim. Microbiome. 2020; 2 (1):33. DOI: 10.1186/s42523-020-00051-7.
18. Shabat S. K., Sasson G., Doron-Faigenboim A., Durman T., Yaacoby S., Berg Miller M. E., et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016; 10 (12): 2958–2972. DOI: 10.1038/ismej.2016.62.
19. Li F., Guan L. L. Metatranscriptomic profiling reveals linkages between the active rumen microbiome and feed efficiency in beef cattle. Appl. Environ. Microbiol. 2017; 83 (9):e00061-17. DOI: 10.1128/AEM.00061-17.
20. Myer P. R., Smith T. P., Wells J. E., Kuehn L. A., Freetly H. C. Rumen microbiome from steers differing in feed efficiency. PLoS One. 2015; 10 (6):e0129174. DOI: 10.1371/journal.pone.0129174.
21. Zhang G., Wang Y., Luo H., Qiu W., Zhang H., Hu L., et al. The association between inflammaging and age-related changes in the ruminal and fecal microbiota among lactating Holstein cows. Front. Microbiol. 2019; 10:1803. DOI: 10.3389/fmicb.2019.01803.
22. Lychkova A. E. Interaction of myoelectrical activity of the intestinal smooth muscles and microflora. Experimental and ClinicalGastroenterology. 2012; 11: 84–90. eLIBRARY ID: 21589953.
23. Martinez-Fernandez G., Denman S. E., Yang C., Cheung J., Mitsumori M., McSweeney C. S. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front. Microbiol. 2016; 7:1122. DOI: 10.3389/fmicb.2016.01122.
24. Khafipour E., Li S., Plaizier J. C., Krause D. O. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis. Appl. Environ. Microbiol. 2009; 75 (22): 7115–7124. DOI: 10.1128/AEM.00739-09.
Review
For citations:
Daugaliyeva A.T., Daugaliyeva S.T., Kineev M.A., Aryngaziyev B.S., Sembaeva A.I., Lavrentieva T.A. Comparative analysis of intestinal microbiome of local cattle and Aberdeen Angus cattle imported to Kazakhstan. Veterinary Science Today. 2022;11(1):53-60. https://doi.org/10.29326/2304-196X-2022-11-1-53-60