Preview

Veterinary Science Today

Advanced search

Studying formation of Pseudomonas aeruginosa biofilms grown under different cultivation conditions

https://doi.org/10.29326/2304-196X-2022-11-1-35-41

Abstract

The purpose of the present study is to assess how cultivation conditions influence growth and formation of Pseudomonas aeruginosa biofilms. The topic is of great importance due to high incidence of P. aeruginosa-caused infections and P. aeruginosa resistance associated with its ability to form biofilms. The paper analyzes factors that influence biofilm formation, i.e.: growth phase used for inoculation (log, stationary), volume of the growth medium (0.2 and 1.0 ml) and concentration of nutrients (liquid nutrient media diluted to concentrations of 50; 25; 12.5 and 6%) in the cultivation volume. As the research demonstrates, all these factors influence biofilm formation; and a P. aeruginosa growth phase before inoculation is a determining factor in the biofilm formation. When P. aeruginosa is inoculated at a stationary phase, biofilm formation shows non-linear dependence on concentration of nutrients and on their total amount in the cultivation volume. The linear dependence of biofilm formation on concentration of nutrients in the culture medium is more pronounced, when P. aeruginosa is inoculated at a log phase. The study shows that lower concentrations of nutrient media components lead to more noticeable differences in biofilm formation, and such differences are statistically significant. Two-fold dilution of the liquid nutrient medium does not affect the intensity of biofilm formation; however, a 4 to 8-folddecrease in concentration of nutrients in 0.2 ml of cultivation volume in habited the biofilms formation. In 1.0 ml of the culture medium, the biofilm forms evenly, and in 0.2 ml of 4–8-fold dilution of nutrient medium it grows slower. The slow growth rate is statistically significant. The cultivation volume is also of great importance. For example, cultures grown in 0.2 ml of nutrient medium at different concentrations of nutrients formed fewer biofilms than microorganisms cultivated in 1.0 ml. At the same time, when inoculating P. aeruginosa both at log and stationary growth phases, biofilm formation is more pronounced in wells containing more cultivation volume. 

About the Authors

T. E. Mironova
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences (SFSCA RAS); FSBEI HE “Novosibirsk State Agrarian University” (FSBEI HE NovosibirskSAU)
Russian Federation


V. S. Сherepushkina
Siberian Federa lScientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences (SFSCA RAS)
Russian Federation


V. N. Afonyushkin
Siberian Federal Scientific Centre of Agro-BioTechnologiesof the Russian Academy of Sciences (SFSCA RAS); FSBEI HE “NovosibirskState Agrarian University” (FSBEI HE NovosibirskSAU); Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS)
Russian Federation


N. V. Davydova
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences (SFSCA RAS)
Russian Federation


V. Yu. Koptev
Siberian Federal Scientific Centre of Agro-BioTechnologies of the Russian Academy of Sciences (SFSCA RAS)
Russian Federation


A. S. Dimova
FSBEI HE “Novosibirsk State Agrarian University” (FSBEI HE Novosibirsk SAU)
Russian Federation


References

1. Egorova O. N., Brusina E. V., Grigor’ev E. V. Epidemiologiya i profilaktika sinegnoinoi infektsii. Federal’nye klinicheskie rekomendatsii = Epidemiology and prevention of pseudomonas infection. Federal clinical guidelines. Moscow: 2014. 82 p. Available at: https://mz19.ru/upload/iblock/7b6/2014_4_p.aerug_new.pdf. (in Russ.)

2. Mardanova A. M., Kabanov D. A., Rudakova N. L., Sharipova M. R. Bioplenki: osnovnye printsipy organizatsii i metody issledovaniya: uchebnometodicheskoe posobie = Biofilms: basic principles of research and test methods: study guide. Kazan: K(P)FU; 2016. 42 p. Available at: https://kpfu.ru/portal/docs/F1250326711/posobie._.Bioplenki._.Mardanova.AM.Kabanov.D.A..Sharipova.M.R.pdf. (in Russ.)

3. Costerton J. W., Stewart P. S., Greenberg E. P. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284 (5418): 1318−1322. DOI: 10.1126/science.284.5418.1318.

4. Litvinenko Z. N. Vliyanie organicheskikh veshchestv na formirovanie bioplenok v vodnykh sistemakh = Impact of organic substances on biofilms formation in aquatic systems: author’s abstract of Candidate of Science (Biology) thesis. Khabarovsk; 2015; 9–10. Available at: https://viewer.rusneb.ru/ru/rsl01005559845?page=1&rotate=0&theme=white. (in Russ.)

5. Donlan R. M., Costerton J. W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 2002; 15 (2): 167−193. DOI: 10.1128/CMR.15.2.167-193.2002.

6. Hentzer M., Teitzel G. M., Balzer G. J., Heydorn A., Molin S., Givskov M., et al. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. J. Bacteriol. 2001; 183 (18): 5395−5401. DOI: 10.1128/JB.183.18.5395-5401.2001.

7. Tetz V. V. The effect of antimicrobial agents and mutagen on bacterial cells in colonies. Med. Microbiol. Lett. 1996; 5 (8): 426–436.

8. Mayansky A. N., Chebotar I. V. Staphylococcal biofilms: structure, regulation, rejection. Journal of Microbiology, Epidemiology and Immunobiology. 2011; 1: 101–108. eLIBRARY ID: 19059408. (in Russ.)

9. Romanova Yu. M., Gintsburg A. L. Bacterial biofilms as a natural form of existence of bacteria in the environment and host organism. Journal of Microbiology, Epidemiology and Immunobiology. 2011; 3: 99–109. eLIBRARY ID: 21064122. (in Russ.)

10. Chebotar I. V., Bocharova Yu. A., Mayansky N. A. Mechanisms and regulation of antimicrobial resistance in Pseudomonas aeruginosa. Clinical Microbiology and Antimicrobial Chemotherapy. 2017; 19 (4): 308−319. eLIBRARY ID: 32501810. (in Russ.)

11. Cross A., Allen J. R., Burke J., Ducel G., Harris A., John J., et al. Nosocomial infections due to Pseudomonas aeruginosa: review of recent trends. Rev. Infect. Dis. 1983; 5 (Suppl 5): 837−845. DOI: 10.1093/clinids/5.supplement_5.s837.

12. Gibson R. L., Burns J. L., Ramsey B. W. Pathophysiology and management of pulmonary infections in cystic fibrosis. Am. J. Respir. Crit. Care Med. 2003; 168 (8): 918–951. DOI: 10.1164/rccm.200304-505SO.

13. Peleg A. Y., Hooper D. C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med. 2010; 362 (19): 1804−1813. DOI: 10.1056/NEJMra0904124.

14. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature. 2000; 407 (6805): 762−764. DOI: 10.1038/35037627.

15. Oglesby L. L., Jain S., Ohman D. E. Membrane topology and roles of Pseudomonas aeruginosa Alg8 and Alg44 in alginate polymerization. Microbiology (Reading). 2008; 154: 1605−1615. DOI: 10.1099/mic.0.2007/015305-0.

16. O’Toole G. A., Kolter R. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 1998; 28 (3): 449−461. DOI: 10.1046/j.1365-2958.1998.00797.x.


Review

For citations:


Mironova T.E., Сherepushkina V.S., Afonyushkin V.N., Davydova N.V., Koptev V.Yu., Dimova A.S. Studying formation of Pseudomonas aeruginosa biofilms grown under different cultivation conditions. Veterinary Science Today. 2022;11(1):35-41. https://doi.org/10.29326/2304-196X-2022-11-1-35-41

Views: 519


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)