Antimicrobial resistance of Salmonella isolates recovered from animal products
https://doi.org/10.29326/2304-196X-2022-11-1-27-34
Abstract
The article provides data on antimicrobial resistance (AMR) of Salmonella isolates recovered from animal products tested in the Laboratory for Microbiological Testing of the FGBI “ARRIAH” from 2019 to 2020. 106 isolates of Salmonella enterica subsp. Enterica were recovered from 4,500 tested samples of raw materials and products of animal origin, 23% of them wereuntyped, and 77% belonged to 17 serological variants. Isolates of S. enteritidis (n = 37) and S. virchow (n = 9) serovariants dominated among the typed cultures of Salmonella, which is consistent with the data from other authors. Antimicrobial susceptibility of the microorganisms was determined in a disk diffusion test in accordance with the recommendations of the European Committee on Antimicrobial Susceptibility Testing. Different Salmonella serovars demonstrated different proportions of susceptible and resistant isolates, in terms of antibiotics from ten pharmacological groups. The largest number of polyresistant isolates was noted in Salmonella serovars S. virchow, S. nigeria, S. infantis, S. colindale. Both resistant and polyresistant Salmonella isolates were most often isolated from poultry products. S. typhimurium serovar, which is referred to in literature as polyresistant, was resistant to one or two antimicrobial agents as the research demonstrates. Isolates of 9 Salmonella serovars out of 17 (65%) showed resistance to nalidixic acid. 97% (n = 36) of S. enteritid isisolates were resistant to this antimicrobial agent. Isolates of S. Colindale serovar (n = 2) were resistant to 8 antimicrobials, S. papuana (n = 5) – to 6 antibiotics, and S. agona (n = 3) – to 5 antimicrobials. Untyped Salmonella isolates were resistant to 9 antibiotics, 2 cultures out of them showed resistance to ciprofloxacin.
About the Authors
N. B. ShadrovaRussian Federation
Candidate of Science (Biology), Head of Laboratory for Microbiological Testing,
Vladimir
O. V. Pruntova
Russian Federation
Doctor of Science (Biology), Professor, Chief Expert of the Information and Analysis Centre,
Vladimir
E. A. Korchagina
Russian Federation
Leading Biologist, Laboratory for Microbiological Testing,
Vladimir
References
1. Callejón R. M., Rodríguez-Naranjo M. I., Ubeda C., Hornedo-Ortega R., Garcia-Parrilla M. C., Troncoso A. M. Reported foodborne outbreaks due to fresh produce in the United States and European Union: trends and causes. Foodborne Pathog. Dis. 2015; 12 (1): 32−38. DOI: 10.1089/fpd.2014.1821.
2. ECDC. Salmonella the most common cause of foodborne outbreaks in the European Union. Available at: https://www.ecdc.europa.eu/en/news-events/salmonella-most-common-cause-foodborne-outbreaks-european-union.
3. Ehuwa O., Jaiswal A. K., Jaiswal S. Salmonella, food safety and food handling practices. Foods. 2021; 10 (5):907. DOI: 10.3390/foods10050907.
4. O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2020 godu = On sanitary and epidemiological welfare of the population in the Russian Federation in 2020 Moscow: The Federal Service for the Oversight of Consumer Protection and Welfare. 2021. 256 p. Available at: https://www.rospotrebnadzor.ru/documents/details.php?ELEMENT_ID=18266. (in Russ.)
5. O sostoyanii sanitarno-epidemiologicheskogo blagopoluchiya naseleniya v Rossiiskoi Federatsii v 2019 godu = On sanitary and epidemiological welfare of the population in the Russian Federation in 2019. Moscow: The Federal Service for the Oversight of Consumer Protection and Welfare. 2020. 299 p. Available at: https://www.rospotrebnadzor.ru/upload/iblock/8e4/gosdoklad-za-2019_seb_29_05.pdf. (in Russ.)
6. Tsyganova S. V. Salmonellosis problem in poultry: an obstacle preventing biosecure production. Ptitsevodstvo. 2014; 4: 43–47. eLIBRARY ID: 21593427. (in Russ.)
7. Marchello C. S., Carr S. D., Crump J. A. A systematic review on antimicrobial resistance among Salmonella Typhi worldwide. Am. J. Trop. Med. Hyg. 2020; 103 (6): 2518−2527. DOI: 10.4269/ajtmh.20-0258.
8. Threlfall E. J. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiol. Rev. 2002; 26 (2): 141−148. DOI: 10.1111/j.1574-6976.2002.tb00606.x.
9. McEwen S. A., Collignon P. J. Antimicrobial Resistance: a One Health Perspective. Microbiol. Spectr. 2018; 6 (2). DOI: 10.1128/microbiolspec.ARBA-0009-2017.
10. Davydov D. S. The national strategy of the Russian Federation for preventing the spread of antimicrobial resistance: challenges and prospects of controlling one of the global biological threats of the 21st century. BIOpreparaty. Profilaktika, diagnostika, lečenie. 2018; 18 (1): 50−56. DOI: 10.30895/2221-996X-2018-18-1-50-56. (in Russ.)
11. WHO. High levels of antibiotic resistance found worldwide, new data shows. Available at: https://www.who.int/news/item/29-01-2018-high-levels-of-antibiotic-resistance-found-worldwide-new-data-shows.
12. McDermott P. F., Zhao S., Tate H. Antimicrobial resistance in nontyphoidal Salmonella. Microbiol. Spectr. 2018; 6 (4). DOI: 10.1128/microbiolspec.ARBA-0014-2017.
13. Antimicrobial resistance monitoring results complementing the EU Overview Summary Report on AMR in zoonotic and indicator bacteria from humans, animals and food in 2017/2018 – Italy, 2020. DOI: 10.5281/zenodo.3636029.
14. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020; 18 (3):6007. DOI: 10.2903/j.efsa.2020.6007.
15. EUCAST Clinical breakpoints – bacteria v.10.0. Available at: https://iacmac.ru/ru/docs/eucast/eucast-clinical-breakpoints-bacteria-10.0-rus. pdf. (in Russ.)
16. Magiorakos A. P., Srinivasan A., Carey R. B., Carmeli Y., Falagas M. E., Giske C. G., et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012; 18 (3): 268−281. DOI: 10.1111/j.1469-0691.2011.03570.x.
17. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2013. EFSA J. 2015; 13 (1):3991. DOI: 10.2903/j.efsa.2015.3991.
18. Ferrari R. G., Rosario D. K. A., Cunha-Neto A., Mano S. B., Figueiredo E. E. S., Conte-Junior C. A. Worldwide epidemiology of Salmonella serovars in animal-based foods: a meta-analysis. Appl. Environ. Microbiol. 2019; 85 (14):e00591-19. DOI: 10.1128/AEM.00591-19.
19. Grimont P. A. D., Weill F. X. Antigenic formulae of the Salmonella serovars. 9th ed. Paris; 2007. Режим доступа: https://www.pasteur.fr/sites/default/files/veng_0.pdf.
20. Jourdan-da Silva N., Fabre L., Robinson E., Fournet N., Nisavanh A., Bruyand M., et al. Ongoing nationwide outbreak of Salmonella Agona associated with internationally distributed infant milk products, France, December 2017. Euro Surveill. 2018; 23 (2): 17-00852. DOI: 10.2807/1560-7917. ES.2018.23.2.17-00852.
21. WHO. Stop using antibiotics in healthy animals to prevent the spread of antibiotic resistance. Режим доступа: https://www.who.int/news/item/07-11-2017-stop-using-antibiotics-in-healthy-animals-to-prevent-the-spread-of-antibiotic-resistance.
22. Terentjeva M., Avsejenko J., Streikiša M., Utināne A., Kovaļenko K., Bērziņš A. Prevalence and antimicrobial resistance of Salmonella in meat and meat products in Latvia. Ann. Agric. Environ. Med. 2017; 24 (2): 317−321. DOI: 10.5604/12321966.1235180.
23. CIPARS. 2016 CIPARS Annual Report: Executive summary. Режим доступа: https://www.canada.ca/en/public-health/services/surveillance/canadian-integrated-program-antimicrobial-resistance-surveillance-cipars/cipars-reports/2016-annual-report-summary.html.
24. Castro-Vargas R. E., Herrera-Sánchez M. P., Rodríguez-Hernández R., Rondón-Barragán I. S. Antibiotic resistance in Salmonella spp. isolated from poultry: A global overview. Vet. World. 2020; 13 (10): 2070−2084. DOI: 10.14202/vetworld.2020.2070-2084.
25. Karkey A., Thwaites G. E., Baker S. The evolution of antimicrobial resistance in Salmonella Typhi. Curr. Opin. Gastroenterol. 2018; 34 (1): 25−30. DOI: 10.1097/MOG.0000000000000406.
26. Yang X., Huang J., Zhang Y., Liu S., Chen L., Xiao C., et al. Prevalence, abundance, serovars and antimicrobial resistance of Salmonella isolated from retail raw poultry meat in China. Sci. Total Environ. 2020; 713:136385. DOI: 10.1016/j.scitotenv.2019.136385.
27. Zeng Y. B., Xiong L. G., Tan M. F., Li H. Q., Yan H., Zhang L. Prevalence and antimicrobial resistance of Salmonella in pork, chicken, and duck from retail markets of China. Foodborne Pathog. Dis. 2019; 16 (5): 339−345. DOI: 10.1089/fpd.2018.2510.
Review
For citations:
Shadrova N.B., Pruntova O.V., Korchagina E.A. Antimicrobial resistance of Salmonella isolates recovered from animal products. Veterinary Science Today. 2022;11(1):27-34. https://doi.org/10.29326/2304-196X-2022-11-1-27-34