Preview

Veterinary Science Today

Advanced search

Current understanding of antimicrobial resistance mechanisms in bacteria (analytical review)

https://doi.org/10.29326/2304-196X-2022-11-1-7-13

Abstract

Data on mechanisms of resistance to antimicrobials in bacteria are reviewed and summarized. Main causes of resistance emergence and spread in bacteria are analyzed. Mechanisms of innate resistance of pathogenic bacteria (non-specific efflux pumps, antibiotic-inactivating enzymes and mechanisms serving as permeability barriers) are characterized. Mechanisms of acquired resistance are described: antibiotic modification or degradation; active removal of an antimicrobial from a bacterial cell – efflux (draining out); sequestration; target modification (bypass). The origin of antimicrobial resistance mechanisms in pathogenic bacteria is shown to be debatable. It is noted that producer microorganisms can directly transfer antimicrobial resistance genes to pathogenic bacteria, but a reliable link between this process and antimicrobial resistance spread has not been identified and proven so far. Horizontal gene transfer, including free DNA transformation, transduction by bacteriophages and plasmid-involving conjugation, is believed to play an important role in antimicrobial resistance spread. All three mechanisms are widespread in nature, although some bacterial species use one mechanism to a great extent than the other two. Transduction is supposed to play an important role, in particular, in the antibiotic resistance gene transfer, but the significance of transformation or transduction in the resistance gene transfer under the laboratory or environmental conditions has not been clarified so far due to the difficulty of naturally emerging recombination detection. Data on the role of conjugation in the antimicrobial resistance gene spread in nature, in particular carbapenem- and quinolone-resistance genes in gram-negative and gram-positive bacteria are presented. New trends in the antimicrobial resistance gene spread are indicated. 

About the Authors

O. V. Pruntova
FGBI “FederalCentrefor Animal Health” (FGBI “ARRIAH”)
Russian Federation

Doctor of Science (Biology), Professor, Chief Expert, Information and Analysis Centre,

Vladimir



V. S. Russaleyev
FGBI “FederalCentrefor Animal Health” (FGBI “ARRIAH”)
Russian Federation

Doctor of Science (Veterinary Medicine), Professor, Scientific Secretary,

Vladimir



N. B. Shadrova
FGBI “FederalCentrefor Animal Health” (FGBI “ARRIAH”)
Russian Federation

Candidate of Science (Biology), Head of Laboratory for Microbiological Testing,

Vladimir



References

1. WHO Global Strategy for Containment of Antimicrobial Resistance. WHO/CDS/CSR/DRS/2001.2. Geneva; 2001. Available at: https://www.who.int/drugresistance/WHO_Global_Strategy_English.pdf.

2. WHO’s first global report on antibiotic resistance reveals serious, worldwide threat to public health. Available at: https://www.who.int/news/item/30-04-2014-who-s-first-global-report-on-antibiotic-resistance-revealsserious-worldwide-threat-to-public-health (date of access: 29.11.2021).

3. European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021; 19 (4):e06490. DOI: 10.2903/j.efsa.2021.6490.

4. Bellini C., Troilet N. Résistance aux antibiotiques: état des lieux en Europe et en Suisse et impact pour le praticien = Antibiotic resistance: situation in Europe and Switzerland, and impact for the physician. Rev. Med. Suisse. 2016; 12 (534): 1699–1702. PMID: 28686394. (in French)

5. Global’naya strategiya VOZ po sderzhivaniyu ustoichivosti k protivomikrobnym preparatam = WHO global strategy for containment of antimicrobial resistance. WHO/CDS/CSR/DRS/2001.2. Available at: https://www.who.int/drugresistance/WHO_Global_Strategy_Russian.pdf (date of access: 29.11.2021). (in Russ.)

6. Strategiya preduprezhdeniya rasprostraneniya antimikrobnoi rezistentnosti v Rossiiskoi Federatsii na period do 2030 goda = Strategy for preventing the spread of antimicrobial resistance in the Russia Federation for the period to 2030 approved by Order of the Russian Federation Government No. 2045-r of 25.09.2017 (as amended on 11.09.2021). Available at: https://docs.cntd.ru/document/436775118 (date of access: 29.11.2021). (in Russ.)

7. Abbanat D., Morrow B., Bush K. New agents in development for the treatment of bacterial infections. Curr. Opin. Pharmacol. 2008; 8 (5): 582– 592. DOI: 10.1016/j.coph.2008.08.001.

8. Peterson E., Kaur P. Antibiotic resistance mechanisms in bacteria: Relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. Front. Microbiol. 2018; 9:2928. DOI: 10.3389/fmicb.2018.02928.

9. Mak S., Xu Y., Nodwell J. R. The expression of antibiotic resistance genes in antibiotic-producing bacteria. Mol. Microbiol. 2014; 93 (3): 391–402. DOI: 10.1111/mmi.12689.

10. Fajardo A., Martínez-Martín N., Mercadillo M., Galán J. C., Ghysels B., Matthijs S., et al. The neglected intrinsic resistome of bacterial pathogens. PLoS One. 2008; 3 (2):e1619. DOI: 10.1371/journal.pone.0001619.

11. Cox G., Wright G. D. Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. Int. J. Med. Microbiol. 2013; 303 (6–7): 287– 292. DOI: 10.1016/j.ijmm.2013.02.009.

12. Nikaido H., Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta. 2009; 1794 (5): 769–781. DOI: 10.1016/j.bbapap.2008.10.004.

13. Arthur M., Courvalin P. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 1993; 37 (8): 1563– 1571. DOI: 10.1128/AAC.37.8.1563.

14. Wright G. D. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 2007; 5 (3): 175–186. DOI: 10.1038/nrmicro1614.

15. Bismuth R., Zilhao R., Sakamoto H., Guesdon J. L., Courvalin P. Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrob. Agents Chemother. 1990; 34 (8): 1611–1614. DOI: 10.1128/AAC.34.8.1611.

16. Van Hoek A. H., Mevius D., Guerra B., Mullany P., Roberts A. P., Aarts H. J. Acquired antibiotic resistance genes: an overview. Front. Microbiol. 2011; 2:203. DOI: 10.3389/fmicb.2011.00203.

17. Dantas G., Sommer M. O. Context matters – the complex interplay between resistome genotypes and resistance phenotypes. Curr. Opin. Microbiol. 2012; 15 (5): 577–582. DOI: 10.1016/j.mib.2012.07.004.

18. Marshall C. G., Wright G. D. DdlN from vancomycin-producing Amycolatopsis orientalis C329.2 is a VanA homologue with D-alanyl-D-lactate ligase activity. J. Bacteriol. 1998; 180 (21): 5792–5795. DOI: 10.1128/JB.180.21.5792-5795.1998.

19. Benveniste R., Davies J. Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. USA. 1973; 70 (8): 2276–2280. DOI: 10.1073/pnas.70.8.2276.

20. Yoon E. J., Goussard S., Touchon M., Krizova L., Cerqueira G., Murphy C., et al. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3’)-VI. mBio. 2014; 5 (5):e01972-14. DOI: 10.1128/mBio.01972-14.

21. Schwarz S., Kehrenberg C., Doublet B., Cloeckaert A. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 2004; 28 (5): 519–542. DOI: 10.1016/j.femsre.2004.04.001.

22. Ambler R. P., Coulson A. F., Frère J. M., Ghuysen J. M., Joris B., Forsman M., et al. A standard numbering scheme for the class A beta-lactamases. Biochem. J. 1991; 276 (Pt 1): 269–270. DOI: 10.1042/bj2760269.

23. Lukac P. J., Bonomo R. A., Logan L. K. Extended-spectrum β-lactamase-producing Enterobacteriaceae in children: old foe, emerging threat. Clin. Infect. Dis. 2015; 60 (9): 1389–1397. DOI: 10.1093/cid/civ020.

24. Paterson D. L., Bonomo R. A. Extended-spectrum beta-lactamases: a clinical update. Clin. Microbiol. Rev. 2005; 18 (4): 657–686. DOI: 10.1128/CMR.18.4.657-686.2005.

25. Martínez J. L. Ecology and evolution of chromosomal gene transfer between environmental microorganisms and pathogens. Microbiol. Spectr. 2018; 6 (1). DOI: 10.1128/microbiolspec.MTBP-0006-2016.

26. Li H., Luo Y. F., Williams B. J., Blackwell T. S., Xie C. M. Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies. Int. J. Med. Microbiol. 2012; 302 (2): 63–68. DOI: 10.1016/j.ijmm.2011.10.001.

27. Schindler B. D., Kaatz G. W. Multidrug efflux pumps of Gram-positive bacteria. Drug. Resist. Updat. 2016; 27: 1–13. DOI: 10.1016/j.drup.2016.04.003.

28. Thanassi D. G., Cheng L. W., Nikaido H. Active efflux of bile salts by Escherichia coli. J. Bacteriol. 1997; 179 (8): 2512–2518. DOI: 10.1128/jb.179.8.2512-2518.1997.

29. Roberts M. C. Update on acquired tetracycline resistance genes. FEMS Microbiol. Lett. 2005; 245 (2): 195–203. DOI: 10.1016/j.femsle.2005.02.034.

30. Rudolf J. D., Bigelow L., Chang C., Cuff M. E., Lohman J. R., Chang C. Y., et al. Crystal structure of the zorbamycin-binding protein ZbmA, the primary self-resistance element in Streptomyces flavoviridis ATCC21892. Biochemistry. 2015; 54 (45): 6842–6851. DOI: 10.1021/acs.biochem.5b01008.

31. Yeats C., Finn R. D., Bateman A. The PASTA domain: a beta-lactambinding domain. Trends Biochem. Sci. 2002; 27 (9):438. DOI: 10.1016/s0968-0004(02)02164-3.

32. Miller W. R., Munita J. M., Arias C. A. Mechanisms of antibiotic resistance in enterococci. Expert Rev. Anti Infect. Ther. 2014; 12 (10): 1221–1236. DOI: 10.1586/14787210.2014.956092.

33. Li W., Sharma M., Kaur P. The DrrAB efflux system of Streptomyces peucetius is a multidrug transporter of broad substrate specificity. J. Biol. Chem. 2014; 289 (18): 12633–12646. DOI: 10.1074/jbc.M113.536136.

34. Munita J. M., Arias C. A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016; 4 (2). DOI: 10.1128/microbiolspec.VMBF-0016-2015.

35. Weisblum B. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 1995; 39 (3): 577–585. DOI: 10.1128/AAC.39.3.577.

36. Roberts M. C. Update on macrolide-lincosamide-streptogramin, ketolide, and oxazolidinone resistance genes. FEMS Microbiol. Lett. 2008; 282 (2): 147–159. DOI: 10.1111/j.1574-6968.2008.01145.x.

37. Burdett V. Tet(M)-promoted release of tetracycline from ribosomes is GTP dependent. J. Bacteriol. 1996; 178 (11): 3246–3251. DOI: 10.1128/jb.178.11.3246-3251.1996.

38. Andersson D. I., Hughes D. Selection and transmission of antibioticresistant bacteria. Microbiol. Spectr. 2017; 5 (4). DOI: 10.1128/microbiolspec.MTBP-0013-2016.

39. Forsman M., Häggström B., Lindgren L., Jaurin B. Molecular analysis of beta-lactamases from four species of Streptomyces: comparison of amino acid sequences with those of other beta-lactamases. J. Gen. Microbiol. 1990; 136 (3): 589–598. DOI: 10.1099/00221287-136-3-589.

40. Barlow M., Reik R. A., Jacobs S. D., Medina M., Meyer M. P., McGowan J. E. Jr., Tenover F. C. High rate of mobilization for blaCTX-Ms. Emerg. Infect. Dis. 2008; 14 (3): 423–428. DOI: 10.3201/eid1403.070405.

41. Johnston C., Martin B., Fichant G., Polard P., Claverys J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat. Rev. Microbiol. 2014; 12 (3): 181–196. DOI: 10.1038/nrmicro3199.

42. Varga M., Kuntová L., Pantůček R., Mašlaňová I., Růžičková V., Doškař J. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiol. Lett. 2012; 332 (2): 146–152. DOI: 10.1111/j.1574-6968.2012.02589.x.

43. Haaber J., Penadés J. R., Ingmer H. Transfer of antibiotic resistance in Staphylococcus aureus. Trends. Microbiol. 2017; 25 (11): 893–905. DOI: 10.1016/j.tim.2017.05.011.

44. Carattoli A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013; 303 (6–7): 298–304. DOI: 10.1016/j.ijmm.2013.02.001.

45. Roberts A. P., Mullany P. Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol. Rev. 2011; 35 (5): 856–871. DOI: 10.1111/j.1574-6976.2011.00283.x.

46. Thomas C. M., Nielsen K. M. Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nat. Rev. Microbiol. 2005; 3 (9): 711–721. DOI: 10.1038/nrmicro1234.

47. Domingues S., da Silva G. J., Nielsen K. M. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob. Genet. Elements. 2012; 2 (5): 211–223. DOI: 10.4161/mge.22967.


Review

For citations:


Pruntova O.V., Russaleyev V.S., Shadrova N.B. Current understanding of antimicrobial resistance mechanisms in bacteria (analytical review). Veterinary Science Today. 2022;11(1):7-13. https://doi.org/10.29326/2304-196X-2022-11-1-7-13

Views: 561


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)