IDENTIFICATION AND ANTIMICROBIAL RESISTANCE OF SALMONELLA ISOLATES
https://doi.org/10.29326/2304-196X-2018-4-27-3-7
Abstract
The paper presents results of the Salmonella identifcation, testings of recovered isolates for their susceptibility to antibiotics and their serogroup and serovar distribution. In 2012–2017 13,774 tests of animal products were performed, 105 Salmonella contaminated samples were detected which is 0.76% of the total number of the tested samples. As a result, 31 isolates were recovered. It was established that 22 of them belonged to seven serovars: S. enteritidis, S. infantis, S. nigeria, S. montevideo, S. typhimurium, S. derby, S. meleagridis. S. infantis (38.7%) and S. enteritidis (16.1%) were identifed as the most spread serovars. There was observed a trend of increase in contaminated samples: 1.13% in 2012 upto 2.84% in 2017. The performed tests for antimicrobial resistance demonstrated that all isolates were susceptible to the following antibiotics: carbpenemes (meropenem, imipenem), β-lactams (amoxicillin /clavulanate), aminoglycoside (amikacin, gentamycine), macrolides (azithromycin). Most of the isolates demonstrated susceptibility to β-lactam antibiotics (ceftriaxone, cefotaxime), fluoroquinolones (ciprofloxacin) and aminoglycosides (kanamycin). Resistance at least to one antibiotic was detected in 12.9% (4/31) of isolates. Resistance to at least three antibiotics was detected in 6.5% (2/31) of isolates. 58.1% (18/31) of isolates demonstrated multiple resistance (to four or more antibiotics).
About the Authors
G. S. SkitovichRussian Federation
Senior Researcher, Candidate of Science (Biology)
Vladimir
N. B. Shadrova
Russian Federation
Head of Laboratory, Candidate of Science (Biology)
Vladimir
O. V. Pruntova
Russian Federation
Chief Expert, Information and Analysis Centre, Doctor of Science (Biology)
Vladimir
K. V. Serova
Russian Federation
Leading Veterinarian
Vladimir
S. Ye. Shmaihel
Russian Federation
Veterinarian
Branch of Crimea
Simferopol
References
1. GOST 31659-2012 (ISO 6579:2002). Food products Salmonella spp. detection method [Produkty pishchevye. Metod vyyavleniya bakterij roda Salmonella]. M.: Standardinform, 2014 (in Russian).
2. Methodical Instruction (MUK) 4.2.1890-04. 4.3. Disc diffusion method. Detection of microorganism resistance to antimicrobials [Disko-diffuzionnyj metod (DDM). Opredelenie chuvstvitel’nosti mikroorganizmov k antibakterial’nym preparatam]. Rospotrebnadzor. 2004; 18–21 (in Russian).
3. Antimicrobial resistance in developing countries. Part I: recent trends and current status. I. N. Okeke, R. Laxminarayan, Z. A. Bhutta [et al.]. Lancet Infect. Dis. 2005; 5 (8): 481–493; DOI: 10.1016/s1473-3099(05)70189-4.
4. Antimicrobial resistance in nontyphoid Salmonella serotypes: a global challenge. L.-H. Su, Ch.-H. Chiu, Ch. Chu, J. T. Ou. Clin. Infect. Dis. 2004; 39 (4): 546–551; DOI: 10.1086/422726.
5. Ceftriaxone-resistant Salmonella infection acquired by a child from cattle. P. D. Fey, Th. J. Safranek, M. E. Rupp [et al.]. N. Engl. J. Med. 2000; 342 (17): 1242–1249; DOI: 10.1056/NEJM200004273421703.
6. Characterization of extended-spectrum β-lactamase (TEM-52)-producing strains of Salmonella enterica serovar Typhimurium with diverse resistance phenotypes. H. Vahaboglu, M. Fuzi, S. Cetin [et al.]. J. Clin. Microbiol. 2001; 39 (2): 791–793; DOI: 10.1128/JCM.39.2.791-793.2001.
7. CLSI. Performance standards for antimicrobial susceptibility testing; Twenty-ffth informational supplement. CLSI document M100-S25. Vol. 35. No. 3. Wayne: Clinical and Laboratory Standards Institute, 2015.
8. Emergence of domestically acquired ceftriaxone-resistant Salmonella infections associated with AmpC β-lactamase. E. F. Dunne, P. D. Fey, P. Kludt [et al.]. JAMA. 2000; 284 (24): 3151– 3156; DOI:10.1001/jama.284.24.3151.
9. Emerging quinolone-resistant Salmonella in the United States. H. Herikstad, P. Hayes, M. Mokhtar [et al.]. Emerg. Infect. Dis. 1997; 3 (3): 371–372; DOI: 10.3201/eid0303.970316.
10. European Committee on Antimicrobial Susceptibility Testing Breakpoint tables for interpretation of MICs and zone diameters Version 8.1, valid from 2018-05-15. URL: http://www.eucast.org/fleadmin/src/media/PDFs/EUCAST_fles/Breakpoint_tables/v_8.1_Breakpoint_Tables.pdf.
11. Frost J. A., Kelleher A., Rowe B. Increasing ciprofloxacin resistance in salmonellas in England and Wales 1991–1994. J. Antimicrob. Chemother. 1996; 37 (1): 85–91; DOI: 10.1093/jac/37.1.85.
12. Life-threatening infantile diarrhea from fluoroquinoloneresistant Salmonella enteric Typhimurium with Mutations in Both gyrA and parC. H. Nakaya, A. Yasuhara, K. Yoshimura [et al.]. Emerg. Infect. Dis. 2003; 9 (2): 255–257; DOI: 10.3201/eid0902.020185.
13. Maanasa B. M., Harish B. N. Drug resistance in nontyphoidal Salmonella – challenges for the future. J. Vet. Med. Res. 2017; 4 (1): 1069; URL: https://jscimedcentral.com/VeterinaryMedicine/veterinarymedicine-4-1069.pdf.
14. Salmonella nomenclature. F. W. Brenner, R. G. Villar, F. J. Angulo [et al.]. J. Clin. Microbiol. 2000; 38 (7): 2465–2467; PMCID: PMC86943.
15. Threlfall E. J. Antimicrobial drug resistance in Salmonella: problems and perspectives in food- and water-borne infections. FEMS Microbiology Reviews. 2002; 26 (2): 141–148; DOI: 10.1111/j.1574-6976.2002.tb00606.x.
Review
For citations:
Skitovich G.S., Shadrova N.B., Pruntova O.V., Serova K.V., Shmaihel S.Ye. IDENTIFICATION AND ANTIMICROBIAL RESISTANCE OF SALMONELLA ISOLATES. Veterinary Science Today. 2018;(4):3-11. https://doi.org/10.29326/2304-196X-2018-4-27-3-7