Preview

Veterinary Science Today

Advanced search

REAL-TIME PCR OPTIMIZATION FOR LISTERIA MONOCYTOGENES GENOME DETECTION

https://doi.org/10.29326/2304-196X-2018-3-26-63-68

Abstract

Listeria monocytogenes is one of the major food contaminants causing the illness, called Listeriosis. Listeriosis incidence is much less, than the number salmonellosis and campylobacteriosis cases, but the clinical disease is significantly more severe and has a higher mortality. That’s why the development of species-specific PCR techniques to detect L. monocytogenes genome is a topical task. L. monocytogenes bacteria genome detection technique using real-time polymerase chain reaction (qRT-PCR) was improved. The amplification target was a highly specific and suitable for qualification of all strains iap gen, coding L. monocytogenes р60 surface protein. Optimum magnesium concentration (6 mM) and primer annealing temperature (57 °С) were selected. The sensitivity and specificity of the technique were identified. Detection threshold was 120 target molecules. The results obtained demonstrate that optimized qRT-PCR version, based on iap gen amplification, enables to detect L. monocytogenes in animal product and food samples. Optimized qRT-PCR-based screening tests ensure rapid and reliable results.

About the Authors

G. S. Skitovich
FGBI "ARRIAH", Vladimir
Russian Federation

Senior Researcher, Candidate of Sciences (Biology),

Vladimir



N. B. Shadrova
FGBI "ARRIAH", Vladimir
Russian Federation

 Head of Laboratory, Candidate of Sciences (Biology), 

Vladimir



O. V. Pruntova
FGBI "ARRIAH", Vladimir
Russian Federation

Chief Expert, Doctor of Sciences (Biology), 

Vladimir



K. V. Serova
FGBI "ARRIAH", Vladimir
Russian Federation

Leading Veterinarian,

Vladimir



References

1. Bkhunia A. K. Pathogenic Microorganisms of Food Products. SPb.: Professia, 2014 (in Russian).

2. Vasiliev D. A., Kovaleva Ye. N., Mastilenko A. V. Identification of Listeria monocytogenes and Listeria ivanovii bacteria species by multiplex realtime PCR. Biotika. 2014; 1 (1): 3–6 (in Russian).

3. Zaitseva Ye. A. Microbiological and molecular and genetic marker analysis system for detection of highly virulent Listeria monocytogenes strains: Doctorate thesis (Medical Science). M., 2010 (in Russian).

4. Guidelines on laboratory diagnostics of human and animal listeriosis: Approved by Head of Main Veterinary Department of the USSR Gosagroprom A. D. Tretyakov on February 13, 1987. URL: http://www.libussr.ru/doc_ussr/usr_13807.htm (request date: 05.02.18) (in Russian).

5. Guidelines on Listeria monocytogenes genome detection in foodstuffs by qRT-PCR. А. V. Piskunov, O. V. Pruntova; FGBI “ARRIAH”. Vladimir, 2013 (in Russian).

6. Microbiological analysis of red meat, poultry and eggs: Translation from English. Ed. G. C. Mead. SPb.: Professia, 2008 (in Russian).

7. New techniques of Listeria monocytogenes identification. T. I. Karpova, S. A. Yermolayeva, I. V. Lopyrev [et al.]. Clinical Microbiology and Antimicrobial Chemotherapy. 2001; 3 (3): 266–273 (in Russian).

8. Food Products. Listeria monocytogenes Bacteria Detection Techniques: GOST 32031-2012. М.: Standartinform, 2014 (in Russian).

9. PCR Design Recommendations. Evrogen. – September 18, 2017. – URL: http://evrogen.ru/kit-user-manuals/Evrogen-PCR-recommendation. pdf (request date: 05.02.18) (in Russian).

10. Tartakovsky I. S., Maleyev V. V., Yermolayeva S. A. Listeria: Role in human infectious pathology and laboratory diagnostics. М.: Meditsina dlya vseh, 2002 (in Russian).

11. A rapid differentiation of Listeria monocytogenes by use of PCR– SSCP in the listeriolysin O (hlyA) locus. A. Lehner, S. Loncarevic, M. Wagner [et al.]. J. Microbiol. Methods. 1999; 34 (3): 165–171.

12. Application of 5’-nuclease PCR for quantitative detection of Listeria monocytogenes in pure cultures, water, skim milk, and unpasteurized whole milk. H. K. Nogva, K. Rudi, K. Naterstad [et al.]. Appl. Environ. Microbiol. 2000; 66 (10): 4266–4271; doi: 10.1128/AEM.66.10.4266-4271.2000.

13. Application of a multiplex polymerase chain reaction assay for the simultaneous confirmation of Listeria monocytogenes and other Listeria species in turkey sample surveillance. I. V. Wesley, K. M. Harmon, J. S. Dickson, A. R. Schwartz. J. Food Prot. 2002; 65 (5): 780–785.

14. Comparative analysis of 16S and 23S rRNA sequences of Listeria species. B. Sallen, A. Rajoharison, S. Desvarenne [et al.]. Int. J. Syst. Bacteriol. 1996; 46 (3): 669–674; doi: 10.1099/00207713-46-3-669.

15. Detection and differentiation of Listeria spp. by a single reaction based on multiplex PCR. A. Bubert, I. Hein, M. Rauch [et al.]. Appl. Environ. Microbiol. 1999; 65 (10): 4688–4692.

16. Detection and quantification of the iap gene of Listeria monocytogenes and Listeria innocua by a new real-time quantitative PCR assay. I. Hein, D. Klein, A. Lehner [et al.]. Res. Microbiol. 2001; 152 (1): 37–46; https://doi.org/10.1016/S0923-2508(00)01166-9.

17. Differentiation of the major Listeria monocytogenes serovars by multiplex PCR. M. Doumith, C. Buchrieser, P. Glaser [et al.]. J. Clin. Microbiol. 2004; 42 (8): 3819–3822; doi: 10.1128/JCM.42.8.3819-3822.2004.

18. Gallagher D. L., Ebel E. D., Kause J. R. Draft FSIS Risk Assessment for Listeria in Ready-to-eat Meat and Poultry Products. Washington, 2003. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.198.7563 &rep=rep1&type=pdf (дата обращения: 05.02.18).

19. Lawrence L. M., Gilmour A. Incidence of Listeria spp. and Listeria monocytogenes in a poultry processing environment and in poultry products and their rapid confirmation by multiplex PCR. Appl. Environ. Microbiol. 1994; 60 (12): 4600–4604.

20. Multilocus sequence typing of Listeria monocytogenes by use of hypervariable genes reveals clonal and recombination histories of three lineages. R. Meinersmann, R. W. Phillips, M. Wiedmann, M. E. Berrang. Appl. Environ. Microbiol. 2004; 70 (4): 2193–2203; doi: 10.1128/AEM.70.4.21932203.2004.

21. Multiplex PCR assay for the routine detection of Listeria in food. N. S. Bansal, F. H. McDonell, A. Smith [et al.]. Int. J. Food Microbiol. 1996; 33 (2–3): 293–300; https://doi.org/10.1016/0168-1605(96)01161-0.

22. Nightingale K., Windham K., Wiedmann M. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis cases and foods. J. Bacteriol. 2005; 187 (16): 5537–5551; doi: 10.1128/JB.187.16.5537-5551.2005.

23. Norton D. M. Polimerase chain reaction-based methods for detection of Listeria monocytogenes: Toward real-time screening for food and environmental samples. J. AOAC Int. 2002; 85 (2): 505–515.

24. Paoli G. C., Bhunia A. K., Bayles D. O. Listeria monocytogenes // Foodborne Pathogens: Microbiology and Molecular Biology. Ed. P. M. Fratamico, A. K. Bhunia, J. L. Smith. Norfolk: Caister Academic, 2005: 295–325.

25. Quantitative detection of Listeria monocytogenes and Listeria innocua by real-time PCR: Assessment of hly, iap, and lin02483 targets and AmpliFluor technology. D. Rodrígues-Lázaro, M. Hernández, M. Scortti [et al.]. Appl. Environ. Microbiol. 2004; 70 (3): 1366–1377; doi: 10.1128/ AEM.70.3.1366-1377.2004.

26. Rapid enumeration of Listeria monocytogenes in artificially contaminated cabbage using real-time polymerase chain reaction. A. J. Hough, S. A. Harbison, M. G. Savill [et al.]. J. Food Prot. 2002; 65 (8): 1329–1332.

27. Rijpens N. P., Herman L. M. Molecular methods for identification and detection of bacterial food pathogens. J. AOAC Int. 2002; 85 (4): 984–995.

28. Rodrígues-Lázaro D., Hernández M., Pla M. Simultaneous quantitative detection of Listeria spp. and Listeria monocytogenes using a duplexreal-time PCR-based assay. FEMS Microbiol. Lett. 2004; 233 (2): 257–267; https://doi.org/10.1111/j.1574-6968.2004.tb09490.x.

29. The gene coding for protein p60 of Listeria monocytogenes and its use as a specific probe for Listeria monocytogenes. S. Köhler, M. LeimeisterWächter, T. Chakraborty [et al.]. Infect. Immun. 1990; 58 (6): 1943–1650.

30. σB -dependent gene induction and expression in Listeria monocytogenes during osmotic and acid stress conditions simulating the intestinal environment. D. Sue, D. Fink, M. Wiedmann, K. J. Boor. Microbiology. 2004; 150 (Pt. 11): 3843–3855; doi: 10.1099/mic.0.27257-0.


Review

For citations:


Skitovich G.S., Shadrova N.B., Pruntova O.V., Serova K.V. REAL-TIME PCR OPTIMIZATION FOR LISTERIA MONOCYTOGENES GENOME DETECTION. Veterinary Science Today. 2018;(3):63-68. https://doi.org/10.29326/2304-196X-2018-3-26-63-68

Views: 1033


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)