Preview

Veterinary Science Today

Advanced search

Validation and application of qPCR test kit for detection of Mycoplasma dispar DNA

https://doi.org/10.29326/2304-196X-2025-14-3-274-282

Abstract

Introduction. Currently, Mycoplasma dispar is widely spread and circulating in livestock farms around the world, including in the Russian Federation. The implementation of a real-time polymerase chain reaction test kit for detecting Mycoplasma dispar DNA in veterinary practice is highly relevant, as this pathogen can cause respiratory diseases in cattle and contribute to calf mortality, leading to significant economic losses in livestock production.

Objective. To introduce a newly developed real-time polymerase chain reaction test kit Mycoplasma dispar DNA detection kit into veterinary practice and determine its major validation parameters.

Materials and methods. Mycoplasma dispar reference strain (ATCC No. 27140) was cultured in 1699 Revised Mycoplasma Medium recommended by the American Type Culture Collection. DNA was extracted using a commercial kit, real-time polymerase chain reaction was performed using pre-selected parameters. The major validation parameters of the test kit were determined: analytical sensitivity, analytical specificity, amplification efficiency, repeatability and reproducibility. Applicability of real-time polymerase chain reaction test kit for detection of Mycoplasma dispar DNA was demonstrated.

Results. The Mycoplasma dispar DNA detection test kit demonstrated an analytical sensitivity (detection limit) of 10 copies/μL (100 copies/reaction), 100% specificity (exclusive to Mycoplasma dispar DNA), 99.01% amplification efficiency, and an average repeatability coefficient of variation of 0.91%. Reproducibility coefficient of variation ranged from 0.66% to 1.26% across 5 replicates and was 0.91% across 15 replicates. The test kit was validated using 228 biological samples from cattle from 13 regions of the Russian Federation, while Mycoplasma dispar DNA was detected in 39.47% of the samples tested.

Conclusion. The developed Mycoplasma dispar DNA test kit has demonstrated high validation performance and is suitable for diagnosing bovine mycoplasmosis.

About the Authors

M. Abed Alhussen
Federal Centre for Animal Health
Russian Federation

Mohammad Abed Alhussen - Cand. Sci. (Veterinary Medicine), Junior Researcher, Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



O. E. Fedorova
Federal Centre for Animal Health
Russian Federation

Olga E. Fedorova - Leading Biologist, Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



A. O. Krotova
Federal Centre for Animal Health
Russian Federation

Alena O. Krotova - Leading Biologist, Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



O. P. Byadovskaya
Federal Centre for Animal Health
Russian Federation

Olga P. Byadovskaya - Cand. Sci. (Biology), Head of Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



A. V. Sprygin
Federal Centre for Animal Health
Russian Federation

Alexander V. Sprygin - Dr. Sci. (Biology), Senior Researcher, Reference Laboratory for Bovine Diseases, Federal Centre for Animal Health.

6 Gvardeyskaya str., Yur’evets, Vladimir 600901



References

1. Tortorelli G., Carrillo Gaeta N., Mendonça Ribeiro B. L., Miranda Marques L., Timenetsky J., Gregory L. Evaluation of Mollicutes microorganisms in respiratory disease of cattle and their relationship to clinical signs. Journal of Veterinary Internal Medicine. 2017; 31 (4): 1215–1220. https://doi.org/10.1111/jvim.14721

2. Chen S., Hao H., Yan X., LiuY., Chu Y. Genome-wide analysis of Mycoplasma dispar provides insights into putative virulence factors and phylogenetic relationships. G3: Genes, Genomes, Genetics. 2019; 9 (2): 317–325. https://doi.org/10.1534/g3.118.200941

3. Abed Alhussen M., Kirpichenko V. V., Yatsentyuk S. P., Nesterov A. A., Byadovskaya O. P., Zhbanova T. V., Sprygin A. V. Mycoplasma bovis, M. bovigenitalium and M. dispar as bovine pathogens: brief characteristics of the pathogens (review). Agricultural Biology. 2021; 56 (2): 245–260. https://doi.org/10.15389/agrobiology.2021.2.245eng

4. Herrmann R. Genome structure and organization. In: Mycoplasmas: Molecular Biology and Pathogenesis. Ed. by J. Maniloff. Washington: American Society for Microbiology; 1992; 157–168.

5. Ter Laak E. A., Noordergraaf J. H. An improved method for the identification of Mycoplasma dispar. Veterinary Microbiology. 1987; 14 (1): 25–31. https://doi.org/10.1016/0378-1135(87)90049-6

6. Nicholas R. A. J., Khan L. A., Houshaymi B., Miles R. J., Ayling R. D., Hotzel H., Sachse K. Close genetic and phenotypic relatedness between Mycoplasma ovine/caprine serogroup 11 and Mycoplasma bovigenitalium. Systematic and Applied Microbiology. 2002; 25 (3): 396–402. https://doi.org/10.1078/0723-2020-00121

7. Ter Laak E. A., Noordergraaf J. H., Dieltjes R. P. J. W. Prevalence of mycoplasmas in the respiratory tracts of pneumonic calves. Journal of Veterinary Medicine, Series B. 1992; 39 (1–10): 553–562. https://doi.org/10.1111/j.1439-0450.1992.tb01205.x

8. Nicholas R., Ayling R., McAuliffe L. Mycoplasma diseases of ruminants. Wallingford: CABI; 2008. 239 p. https://doi.org/10.1079/9780851990125.0000

9. Almeida R. A., Rosenbusch R. F. Capsulelike surface material of Mycoplasma dispar induced by in vitro growth in culture with bovine cells is antigenically related to similar structures expressed in vivo. Infection and Immunity. 1991; 59 (9): 3119–3125. https://doi.org/10.1128/iai.59.9.3119-3125.1991

10. Howard C. J., Gourlay R. N., Taylor G. Immunity to Mycoplasma infections of the calf respiratory tract. Advances in Experimental Medicine and Biology. 1981; 137: 711–726. https://pubmed.ncbi.nlm.nih.gov/7331951

11. Ayling R. D., Bashiruddin S. E., Nicholas R. A. J. Mycoplasma species and related organisms isolated from ruminants in Britain between 1990 and 2000. Veterinary Record. 2004; 155 (14): 413–416. https://doi.org/10.1136/vr.155.14.413

12. França Dias de Oliveira B. A., Carrillo Gaeta N., Mendonça Ribeiro B. L., Reyes Alemán M. A., Miranda Marques L., Timenetsky J., et al. Determination of bacterial aetiologic factor on tracheobronchial lavage in relation to clinical signs of bovine respiratory disease. Journal of Medical Microbiology. 2016; 65 (10): 1137–1142. https://doi.org/10.1099/jmm.0.000345

13. Bottinelli M., Passamonti F., Rampacci E., Stefanetti V., Pochiero L., Coletti M., et al. DNA microarray assay and real-time PCR as useful tools for studying the respiratory tract Mycoplasma populations in young dairy calves. Journal of Medical Microbiology. 2017; 66 (9): 1342–1349. https://doi.org/10.1099/jmm.0.000571

14. Mosier D. Review of BRD pathogenesis: the old and the new. Animal Health Research Reviews. 2014; 15 (2): 166–168. https://doi.org/10.1017/S1466252314000176

15. Taylor G. Immunity to Mycoplasma infections of the respiratory tract: a review. Journal of the Royal Society of Medicine. 1979; 72 (7): 520–526. https://doi.org/10.1177/014107687907200711

16. Abed Alhussen M., Nesterov A. А., Kirpichenko V. V., Yatsentyuk S. P., Sprygin A. V., Byadovskaya O. P., Kononov A. V. Bovine mycoplasmosis occurrence on livestock farms in the Russian Federation for 2015–2018. Veterinary Science Today. 2020; (2): 102–108. https://doi.org/10.29326/2304-196X-2020-2-33-102-108

17. Bernier Gosselin V., Francoz D., Babkine M., Desrochers A., Nichols S., Doré E, et al. A retrospective study of 29 cases of otitis media/interna in dairy calves. The Canadian Veterinary Journal. 2012; 53 (9): 957–962. https://pubmed.ncbi.nlm.nih.gov/23450859

18. Parker A. M., Sheehy P. A., Hazelton M. S., Bosward K. L., House J. K. A review of Mycoplasma diagnostics in cattle. Journal of Veterinary Internal Medicine. 2018; 32 (3): 1241–1252. https://doi.org/10.1111/jvim.15135

19. Ter Laak E. A., Noordergraaf J. H., Verschure M. H. Susceptibilities of Mycoplasma bovis, Mycoplasma dispar, and Ureaplasma diversum strains to antimicrobial agents in vitro. Antimicrobial Agents and Chemotherapy. 1993; 37 (2): 317–321. https://doi.org/10.1128/AAC.37.2.317

20. Tegtmeier C., Uttenthal A. A., Friis N. F., Jensen N. E., Jensen H. E. Pathological and microbiological studies on pneumonic lungs from Danish calves. Journal of Veterinary Medicine, Series B. 1999; 46 (10): 693–700. https://doi.org/10.1046/j.1439-0450.1999.00301.x

21. Bottinelli M., Merenda M., Gastaldelli M., Picchi M., Stefani E., Nicholas R. A. J., Catania S. The pathogen Mycoplasma dispar shows high minimum inhibitory concentrations for antimicrobials commonly used for bovine respiratory disease. Antibiotics. 2020; 9 (8):460. https://doi.org/10.3390/antibiotics9080460

22. DeDonder K. D., Apley M. D. A literature review of antimicrobial resistance in Pathogens associated with bovine respiratory disease. Animal Health Research Reviews. 2015; 16 (2): 125–134. https://doi.org/10.1017/S146625231500016X

23. Anholt R. M., Klima C., Allan N., Matheson-Bird H., Schatz C., Ajitkumar P., et al. Antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex in Alberta, Canada. Frontiers in Veterinary Science. 2017; (4):207. https://doi.org/10.3389/FVETS.2017.00207

24. Dabo S. M., Taylor J. D., Confer A. W. Pasteurella multocida and bovine respiratory disease. Animal Health Research Reviews. 2007; 8 (2): 129–150. https://doi.org/10.1017/S1466252307001399

25. Almeida R. A., Wannemuehler M. J., Rosenbusch R. F. Interaction of Mycoplasma dispar with bovine alveolar macrophages. Infection and Immunity. 1992; 60 (7): 2914–2919. https://doi.org/10.1128/iai.60.7.2914-2919.1992

26. Friis N. F. Mycoplasma dispar as a causative agent in pneumonia of calves. Acta Veterinaria Scandinavica. 1980; 21: 34–42. https://doi.org/10.1186/bf03546898

27. Ross R. F. Mycoplasma – animal pathogens. In: Rapid Diagnosis of Mycoplasmas. Ed. by I. Kahane, A. Adoni. Boston: Springer; 1993; 69–109. https://doi.org/10.1007/978-1-4615-2478-6_7

28. Jasper D. E. Bovine mycoplasmal mastitis. Journal of the American Veterinary Medical Association. 1979; 175 (10): 1072–1074. https://doi.org/10.2460/javma.1979.175.10.1072

29. Gourlay R. N., Howard C. J., Thomas L. H., Wyld S. G. Pathogenicity of some Mycoplasma and Acholeplasma species in the lungs of gnotobiotic calves. Research in Veterinary Science. 1979; 27 (2): 233–237. https://doi.org/10.1016/S0034-5288(18)32836-4

30. George T. D., Horsfall N., Sullivan N. D. A subclinical pneumonia of calves associated with Mycoplasma dispar. Australian Veterinary Journal. 1973; 49 (12): 580–586. https://doi.org/10.1111/j.1751-0813.1973.tb06738.x

31. Shilan Faqe Muhammad Salih. Detection of Mycoplasma dispar in bovine respiratory disease by polymerase chain reaction assay in Sulaimaniyah city. Iraqi Journal of Agricultural Sciences. 2024; 55 (2): 703–710. https://doi.org/10.36103/p6042k98

32. Andersson A.-M., Aspán A., Wisselink H. J., Smid B., Ridley A., Pelkonen S., et al. A European inter-laboratory trial to evaluate the performance of three serological methods for diagnosis of Mycoplasma bovis infection in cattle using latent class analysis. BMC Veterinary Research. 2019; 15:369. https://doi.org/10.1186/s12917-019-2117-0

33. Dudek K., Nicholas R. A. J., Szacawa E., Bednarek D. Mycoplasma bovis infections – occurrence, diagnosis and control. Pathogens. 2020; 9 (8):640. https://doi.org/10.3390/pathogens9080640

34. Abed Alhussen M. Molecular and biological methods for bovine mycoplasmosis diagnostics: Author’s thesis for degree of Cand. Sci. (Veterinary Medicine). Vladimir: Federal Centre for Animal Health; 2023. 194 p. (in Russ.)

35. Howard C. J. Mycoplasmas and bovine respiratory disease: studies related to pathogenicity and the immune response – a selective review. Yale Journal of Biology and Medicine. 1983; 56 (5–6): 789–797. https://pubmed.ncbi.nlm.nih.gov/6382831

36. Martin S. W., Bateman K. G., Shewen P. E., Rosendal S., Bohac J. E. The frequency, distribution and effects of antibodies, to seven putative respiratory pathogens, on respiratory disease and weight gain in feedlot calves in Ontario. Canadian Journal of Veterinary Research. 1989; 53 (3): 355–362. https://pubmed.ncbi.nlm.nih.gov/2766158

37. Martin S. W., Bateman K. G., Shewen P. E., Rosendal S., Bohac J. G., Thorburn M. A group level analysis of the associations between antibodies to seven putative pathogens and respiratory disease and weight gain in Ontario feedlot calves. Canadian Journal of Veterinary Research. 1990; 54 (3): 337–342. https://pubmed.ncbi.nlm.nih.gov/2165846

38. Miles K., McAuliffe L., Ayling R. D., Nicholas R. A. J. Rapid detection of Mycoplasma dispar and M. bovirhinis using allele specific polymerase chain reaction protocols. FEMS Microbiology Letters. 2004; 241 (1): 103–107. https://doi.org/10.1016/j.femsle.2004.10.010

39. McAuliffe L., Ellis R. J., Lawes J. R., Ayling R. D., Nicholas R. A. J. 16S rDNA PCR and denaturing gradient gel electrophoresis; a single generic test for detecting and differentiating Mycoplasma species. Journal of Medical Microbiology. 2005; 54 (8): 731–739. https://doi.org/10.1099/jmm.0.46058-0

40. McAuliffe L., Ellis R. J., Ayling R. D., Nicholas R. A. J. Differentiation of Mycoplasma species by 16S ribosomal DNA PCR and denaturing gradient gel electrophoresis fingerprinting. Journal of Clinical Microbiology. 2003; 41 (10): 4844–4847. https://doi.org/10.1128/JCM.41.10.4844-4847.2003

41. Baird S. C., Carman J., Dinsmore R. P., Walker R. L., Collins J. K. Detection and identification of Mycoplasma from bovine mastitis infections using a nested polymerase chain reaction. Journal of Veterinary Diagnostic Investigation. 1999; 11 (5): 432–435. https://doi.org/10.1177/104063879901100507

42. Moalic P.-Y., Gesbert F., Kempf I. Utility of an internal control for evaluation of a Mycoplasmameleagridis PCR test. Veterinary Microbiology. 1998; 61 (1–2): 41–49. https://doi.org/10.1016/S0378-1135(98)00173-4

43. Maaroufi Y., de Bruyne J.-M., Duchateau V., Scheen R., Crokaert F. Development of a multiple internal control for clinical diagnostic real-time amplification assays. FEMS Immunology and Medical Microbiology. 2006; 48 (2): 183–191. https://doi.org/10.1111/j.1574-695X.2006.00125.x

44. Hymas W., Stevenson J., Taggart E. W., Hillyard D. Use of lyophilized standards for the calibration of a newly developed real time PCR assay for human herpes type six (HHV6) variants A and B. Journal of Virological Methods. 2005; 128 (1–2): 143–150. https://doi.org/10.1016/j.jviromet.2005.05.003

45. Dingle K. E., Crook D., Jeffery K. Stable and noncompetitive RNA internal control for routine clinical diagnostic reverse transcription-PCR. Journal of Clinical Microbiology. 2004; 42 (3): 1003–1011. https://doi.org/10.1128/JCM.42.3.1003-1011.2004

46. Stöcher M., Leb V., Berg J. A convenient approach to the generation of multiple internal control DNA for a panel of real-time PCR assays. Journal of Virological Methods. 2003; 108 (1): 1–8. https://doi.org/10.1016/S0166-0934(02)00266-5

47. OIE Quality Standard and Guidelines for Veterinary Laboratories: Infectious Diseases. 2nd ed. 2008. 70 p.

48. Frey J., Nicolet J. Molecular identification and epidemiology of animal mycoplasmas. Wiener Klinische Wochenschrift. 1997; 109 (14–15): 600–603. https://pubmed.ncbi.nlm.nih.gov/9286067

49. Abed Alhussen M., Nesterov А. А., Sprygin А. V., Shumilova I. N., Bryantseva M. S., Byadovskaya О. P. Optimization of medium composition and study of growth stages of Mycoplasma bovis “Kaluga 2020”isolate. Veterinary Science Today. 2022; 11 (3): 262–267. https://doi.org/10.29326/2304-196X-2022-11-3-262-267

50. Hwang M.-H., Damte D., Cho M.-H., KimY.-H., Park S.-C. Optimization of culture media of pathogenic Mycoplasma hyopneumoniae by a response surface methodology. Journal of Veterinary Science. 2010; 11 (4): 327–332. https://doi.org/10.4142/jvs.2010.11.4.327

51. Morozova E. O., Krotova A. O., Sadchikova A. S., Tenitilov N. A., Byadovskaya O. P., Igolkin A. S., et al. Methodical recommendations on preparation of exogenous internal control sample for real-time PCR to detect microorganism DNA: approved by the Federal Centre for Animal Health 13.10.2023 No. 81-23. Vladimir: Federal Centre for Animal Health; 2023. 32 p. (in Russ.)

52. Bustin S. A., Benes V., Garson J. A., Hellemans J., Huggett J., Kubista M., et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry. 2009; 55 (4): 611–622. https://doi.org/10.1373/clinchem.2008.112797

53. Yan L., Toohey-Kurth K. L., Crossley B. M., Bai J., Glaser A. L., Tallmadge R. L., Goodman L. B. Inhibition monitoring in veterinary molecular testing. Journal of Veterinary Diagnostic Investigation. 2020; 32 (6): 758–766. https://doi.org/10.1177/1040638719889315

54. Cornelissen J. B. W. J., de Bree F. M., van der Wal F. J., Kooi E. A., Koene M. G. J., Bossers A., et al. Mycoplasma detection by triplex real-time PCR in bronchoalveolar lavage fluid from bovine respiratory disease complex cases. BMC Veterinary Research. 2017; 13:97. https://doi.org/10.1186/s12917-017-1023-6

55. Neilson J. W., Jordan F. L., Maier R. M. Analysis of artifacts suggests DGGE should not be used for quantitative diversity analysis. Journal of Microbiological Methods. 2013; 92 (3): 256–263. https://doi.org/10.1016/j.mimet.2012.12.021

56. Marques L. M., Buzinhani M., Yamaguti M., Oliveira R. C., Ferreira J. B., Mettifogo E., Timenetsky J. Use of a polymerase chain reaction for detection of Mycoplasma dispar in the nasal mucus of calves. Journal of Veterinary Diagnostic Investigation. 2007; 19 (1): 103–106. https://doi.org/10.1177/104063870701900118

57. Zhang G., Brown E. W., González-Escalona N. Comparison of real-time PCR, reverse transcriptase real-time PCR, loop-mediated isothermal amplification, and the FDA conventional microbiological method for the detection of Salmonella spp. in produce. Applied and Environmental Microbiology. 2011; 77 (18): 6495–6501. https://doi.org/10.1128/AEM.00520-11

58. Deeney A. S., Collins R., Ridley A. M. Identification of Mycoplasma species and related organisms from ruminants in England and Wales during 2005–2019. BMC Veterinary Research. 2021; 17:325. https://doi.org/10.1186/s12917-021-03037-y

59. Chen J., Wang S., Dong D., Zhang Z., Huang Y., Zhang Y. Isolation and characterization of Mycoplasma ovipneumoniae infecting goats with pneumonia in Anhui Province, China. Life. 2024; 14 (2):218. https://doi.org/10.3390/life14020218

60. Wolfe L. L., Diamond B., Spraker T. R., Sirochman M. A., Walsh D. P., Machin C. M., et al. A bighorn sheep die-off in southern Colorado involving a Pasteurellaceae strain that may have originated from syntopic cattle. Journal of Wildlife Diseases. 2010; 46 (4): 1262–1268. https://doi.org/10.7589/0090-3558-46.4.1262


Review

For citations:


Abed Alhussen M., Fedorova O.E., Krotova A.O., Byadovskaya O.P., Sprygin A.V. Validation and application of qPCR test kit for detection of Mycoplasma dispar DNA. Veterinary Science Today. 2025;14(3):274-282. (In Russ.) https://doi.org/10.29326/2304-196X-2025-14-3-274-282

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)