Preview

Veterinary Science Today

Advanced search

Rabies in the Russian Federation: A 35-year review of trends, patterns, and influencing factors

https://doi.org/10.29326/2304-196X-2025-14-3-232-240

Abstract

Introduction. Sylvatic rabies cases characterized by a consistently high incidence among wild and domestic animals are reported in the Russian Federation. The epizootic cycle of rabies is maintained through the biological reservoir of Lyssavirus rabies in wild canid predators, primarily the red fox (Vulpes vulpes). Fox ecology and behavior determine the spatial spread of rabies, its seasonal incidence patterns, and the species composition of animals involved in the epizootic cycle. Objective. The rabies spatiotemporal analysis of 35-year monitoring data to study determinants and patters of the current disease situation.

Materials and methods. Using Microsoft Access (relational database management system www.microsoft.com) the data on rabies outbreaks in the Russian Federation, rabies vaccination among wild animals and natural and agricultural zoning were aggregated. For spatial analysis, all epizootiological data were geocoded and visualized as vector map layers within the GIS thematic project. The GIS project was constructed using QGIS Desktop platform (www.qgis.org).

Results. The current rabies distribution area covers most of the Russian regions. The area of persistently high rabies incidence primarily encompasses the forest-steppe, mixed forest, and broadleaf forest biomes of the East European Plain. In the Russian Federation, the maximum number of rabies cases is reported among foxes. Rabies epizootics in natural ecosystems exhibit spillover effects, leading to active transmission among multiple domestic animal species. The primary risk group involves dogs, cats and cattle. Oral rabies vaccination of wild carnivores established a significant downward trend in animal rabies incidence while reducing amplitude fluctuations in long-term epizootic cycle.

Conclusion. The observed decline in rabies incidence across the Russian Federation has not been accompanied by a proportional reduction in the disease’s geographic distribution. These findings underscore the need to modify current control measures and implement a comprehensive program for complete elimination of circulating Lyssavirus rabies strains from infected ecosystems.

About the Authors

A. M. Gulyukin
Federal Scientific Centre VIEV
Russian Federation

Alexey M. Gulyukin - Dr. Sci. (Veterinary Medicine), Corresponding Member of the Russian Academy of Sciences, Director of Federal Scientific Centre VIEV.

24/1 Ryazansky prospekt, Moscow 109428



A. A. Shabeykin
Federal Scientific Centre VIEV
Russian Federation

Alexander A. Shabeykin - Dr. Sci. (Veterinary Medicine), Head of the Laboratory of General Epizootology, Federal Scientific Centre VIEV.

24/1 Ryazansky prospekt, Moscow 109428



References

1. Epidemiology of Rabies. Rabies – Bulletin – Europe. WHO Collaborating Centre for Rabies Surveillance & Research. https://who-rabies-bulletin.org/site-page/epidemiology-rabies

2. Genus: Lyssavirus. In: Rhabdoviridae. International Committee on Taxonomy of Viruses. https://ictv.global/report/chapter/rhabdoviridae/rhabdoviridae/lyssavirus

3. Rupprecht C. E., Turmelle A., Kuzmin I. V. A perspective on lyssavirus emergence and perpetuation. Current Opinion in Virology. 2011; 1 (6): 662–670. https://doi.org/10.1016/j.coviro.2011.10.014

4. Badrane H., Tordo N. Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. Journal of Virology. 2001; 75 (17): 8096–8104. https://doi.org/10.1128/jvi.75.17.8096-8104.2001

5. Kuzmin I. V., Shi M., Orciari L. A., Yager P. A., Velasco-Villa A., Kuzmina N. A., et al. Molecular inferences suggest multiple host shifts of rabies viruses from bats to mesocarnivores in Arizona during 2001–2009. PLoS Pathogens. 2012; 8 (6):e1002786. https://doi.org/10.1371/journal.ppat.1002786

6. Marston D. A., Banyard A. C., McElhinney L. M., Freuling C. M., Finke S., de Lamballerie X., et al. The lyssavirus host-specificity conundrum-rabies virus – the exception not the rule. Current Opinion in Virology. 2018; 28: 68–73. https://doi.org/10.1016/j.coviro.2017.11.007

7. Makarov V. V., Gulyukin A. M., Gulyukin M. I. Rabies: Natural History at Centuries Boundary. Moscow: ZooVetKniga; 2015. 121 р. (in Russ.)

8. Metlin A. Ye. Modern aspects of Lyssavirus classification. Veterinary Science Today. 2017; (3): 52–57. https://elibrary.ru/zigafp (in Russ.)

9. Rupprecht C. E., Hanlon C. A., Slate D. Oral vaccination of wildlife against rabies: opportunities and challenges in prevention and control. Developments in Biologicals. 2004; 119: 173–184. https://pubmed.ncbi.nlm.nih.gov/15742629

10. Gruzdev K. N., Metlin A. Ye. Animal Rabies. 2nd ed., revised and expanded. Vladimir: Federal Centre for Animal Health; 2022. 442 p. (in Russ.)

11. Cherkasskiy B. L. Epidemiology and Prevention of Rabies. Moscow: Medicine; 1985. 287 p. (in Russ.)

12. Poleshchuk E. M., Sidorov G. N., Gribencha S. V. A summary of the data about antigenic and genetic diversity of rabies virus circulating in the terrestrial mammals in Russia. Problems of Virology. 2013; 58 (3): 9–16. https://elibrary.ru/pzxttn (in Russ.)

13. Bourhy H., Kissi B., Audry L., Smreczak M., Sadkowska-Todys M., Kulonen K., et al. Ecology and evolution of rabies virus in Europe. Journal of General Virology. 1999; 80 (10): 2545–2557. https://doi.org/10.1099/0022-1317-80-10-2545

14. Makarov V. V., Sukharev O. I., Gulyukin A. M., Sokolov M. N., Litvinov O. B. Statistical analyses morbidity racoon dogs rabies. Veterinariya. 2009; (6): 20–25. https://elibrary.ru/kwzdoz (in Russ.)

15. Matouch O. The rabies situation in Eastern Europe. Developments in Biologicals. 2008; 131: 27–35. https://pubmed.ncbi.nlm.nih.gov/18634463

16. Gulyukin A. M., Shabeikyn A. A., Patrikeev V. V., Parshikova A. V., Tsaregradskiy P. Yu., Shabeykina M. V. Features of the epizootic process of rabies in the Eastern part of the European nosoareal. Veterinariya. 2022; (12): 15–21. https://doi.org/10.30896/0042-4846.2022.25.12.15-21 (in Russ.)

17. Botvinkin A. D., Poleschuk E. M., Kuzmin I. V., Borisova T. I., Gazaryan S. V., Yager P., Rupprecht C. E. Novel lyssaviruses isolated from bats in Russia. Emerging Infectious Diseases. 2003; 9 (12): 1623–1625. https://doi.org/10.3201/eid0912.030374

18. Speranskaya A. S., Samoilov A. E., Kaptelova V. V., Artyushin I. V., Simonova E. G., Shabeykin A. A., et al. Genome sequence of European bat 1 lyssavirus isolated from Eptesicus serotinus, which was caught near Voronezh city in late 2019. Molecular Diagnostics and Biosafety – 2020: Russian national scientific and practical conference with international participation (Moscow,October 6–8, 2020): conference proceedings. Moscow: Central Research Institute for Epidemiology; 2020; 251–252. https://elibrary.ru/yisewj (in Russ.)

19. Poleshchuk E. M., Tagakova D. N., Sidorov G. N., Orlova T. S., Gordeiko N. S., Kaisarov A. Zh. Lethal cases of lyssavirus encephalitis in humans after contact with bats in the Russian Far East in 2019–2021. Problems of Virology. 2023; 68 (1): 45–58. https://doi.org/10.36233/0507-4088-156

20. Shabejkin A. A., Gulyukin A. M., Parshikova A. V. Analysis of patterns in rabies epizootic process in the European part of the Russian Federation. Veterinaria i kormlenie. 2015; (1): 29–34. https://elibrary.ru/tgucgv (in Russ.)

21. Gulyukin A. M. The principles of building an informational and analytical systems for forecasting and modeling epizootological risks. Veterinariya. 2024; (9): 3–8. https://doi.org/10.30896/0042-4846.2024.27.9.03-08 (in Russ.)

22. Gaidamaka E. I., Rozov N. N., Sashko D. I., Bondarchuk N. P., Bulgakov D. S., Vadkovskaya N. N. et al. Natural and Agricultural Zoning of the Land Fund of the USSR. Ed. by A. N. Kashtanov. Moscow: Kolos; 1983. 336 p. (in Russ.)

23. The number of pets in the Russian Federation has increased by 11% in three years. TASS Russian News Agency. April 10, 2024. https://tass.ru/novosti-partnerov/20499757 (in Russ.)

24. Cherkasskii B. L., Knop A. G., Vedernikov V. A., Sedov V. A., Khaĭrushev A. E., Chernichenko S. A. The epidemiology and epizootiology of rabies on the territory of the former USSR. Journal of Microbiology, Epidemiology and Immunobiology. 1995; 72 (1): 21–26. https://pubmed.ncbi.nlm.nih.gov/7778368 (in Russ.)

25. Marston D. A., Horton D. L., Nunez J., Ellis R. J., Orton R. J., Johnson N., et al. Genetic analysis of a rabies virus host shift event reveals within-host viral dynamics in a new host. Virus Evolution. 2017; 3 (2):vex038. https://doi.org/10.1093/ve/vex038

26. Metlin A. E., Rybakov S., Gruzdev K., Neuvonen E., Huovilainen A. Genetic heterogeneity of Russian, Estonian and Finnish field rabies viruses. Archives of Virology. 2007; 152 (9): 1645–1654. https://doi.org/10.1007/s00705-007-1001-6

27. Paroshin A. V., Voskresensky S. B., Gruzdev K. N., Chernyshova E. V. Rabies situation in the Moscow oblast in 2011–2023 and the role of oral vaccination of wild carnivores against rabies. Veterinary Science Today. 2024; 13 (3): 214–222. https://doi.org/10.29326/2304-196X-2024-13-3-214-222

28. Ivanov A. V., Khismatullina N. A., Petrova T. P., Gulyukin A. M., Shabeikin A. A., Karimov M. M., et al. Rabies epizootic situation in the Kaliningrad Region. Veterinariya. 2015; (4): 9–13. https://elibrary.ru/tolysd (in Russ.)

29. Fogel L. S., Gruzdev K. N., Krotov L. N., Danko Yu. Yu. The practice of creating buffer zones in anti-epizootic measures for rabies using the example of the border zone with Finland. Legal Regulation in Veterinary Medicine. 2024; (1): 38–41. https://doi.org/10.52419/issn2782-6252.2024.1.38 (in Russ.)


Review

For citations:


Gulyukin A.M., Shabeykin A.A. Rabies in the Russian Federation: A 35-year review of trends, patterns, and influencing factors. Veterinary Science Today. 2025;14(3):232-240. (In Russ.) https://doi.org/10.29326/2304-196X-2025-14-3-232-240

Views: 12


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)