The role of purinergic signaling and cytokine network in the inflammatory process
https://doi.org/10.29326/2304-196X-2025-14-3-263-273
Abstract
Introduction. Inflammation is a complex biological process essential for host defense against pathogens and tissue repair. This process is regulated by a variety of signaling molecules, among which purines and cytokines play an important role. Purinergic signaling mediated by adenosine triphosphate, adenosine monophosphate, and other nucleotides plays a key role in regulating immune responses and inflammatory processes. The cytokine network, including interleukins, tumor necrosis factor α and other molecules, is also an important component of inflammation, providing communication between cells of the immune system and regulating their activity. Understanding the purinergic signaling and the cytokine network interaction mechanisms is crucial for developing innovative treatments for inflammatory diseases.
Objective. To synthesize current research findings on the role of purinergic signaling and the cytokine network in inflammatory processes within animal models.
Materials and methods. 55 scientific publications by Russian and international authors (2000–2021) investigating the effects of nucleotides, nucleosides, and purinergic receptors on immune response development, macrophage activation, and cytokine release mechanisms were analyzed. Source databases included eLIBRARY.RU, CyberLeninka, PubMed, NCBI, ResearchGate, CABI, and Google Scholar.
Results. The analysis explored mechanisms of the inflammatory response, including the role of various cells and molecules – cytokines and receptors – in the regulation of the immune response. The latter plays an important role in activating immune system cells and regulating inflammatory reactions. The process of adenosine triphosphate dephosphorylation by CD39 and CD73 enzymes, which promotes the production of adenosine and the activation of anti-inflammatory mechanisms, is discussed.The functions of pro-inflammatory cytokines such as interleukin-1, tumor necrosis factor α and interleukin-6 are analyzed in the context of macrophage activation and neutrophil migration to the site of inflammation. The importance of regulating these processes is emphasized in order to prevent excessive inflammatory response and ensure homeostasis. The mechanisms of transition between the phases of inflammation are examined, including the role of anti-inflammatory cytokines such as interleukin-10 and transforming growth factor β in controlling neutrophil activity and resolving the inflammatory process.
Conclusion. Further study of this topic can deepen the modern knowledge of scientists about the mechanisms of inflammation and create the basis for the development of innovative therapeutic strategies aimed at treating diseases caused by disorders of the immune system.
Keywords
About the Authors
V. V. MosyaginRussian Federation
Vladimir V. Mosyagin - Dr. Sci. (Biology), Senior Researcher, Laboratory of Veterinary Medicine and Biotechnology, Federal Agricultural Kursk Research Center.
70b Karl Marx str., Kursk 305021
E. A. Isakova
Russian Federation
Elizaveta A. Isakova - Postgraduate Student, Research Engineer, Laboratory of Veterinary Medicine and Biotechnology, Federal Agricultural Kursk Research Center; Lecturer, Kursk State Agrarian University named after I.I. Ivanov.
70b Karl Marx str., Kursk 305021; 70 Karl Marx str., Kursk 305021
G. F. Ryzhkova
Russian Federation
Galina F. Ryzhkova - Dr. Sci. (Biology), Professor, Head of Department of Physiology and Chemistry named after Professor A.A. Sysoev, Kursk State Agrarian University named after I.I. Ivanov.
70 Karl Marx str., Kursk 305021
I. P. Mosyagina
Russian Federation
Irina P. Mosyagina - Postgraduate Student, Lecturer, Kursk State Agrarian University named after I.I. Ivanov.
70 Karl Marx str., Kursk 305021
References
1. Golovkin A. S., Asadullina I. A., Kudryavtsev I. V. Purinergic regulation of basic physiological and pathological processes. Medical Immunology (Russia). 2018; 20 (4): 463–476. https://doi.org/10.15789/1563-0625-2018-4-463-476 (in Russ.)
2. Coutinho-Silva R., Knight G. E., Burnstock G. Impairment of the splenic immune system in P2X2/P2X3 knockout mice. Immunobiology. 2005; 209 (9): 661–668. https://doi.org/10.1016/j.imbio.2004.09.007
3. Eltzschig H. K., Sitkovsky M. V., Robson S. C. Purinergic signaling during inflammation. New England Journal of Medicine. 2012; 367 (24): 2322–2333. https://doi.org/10.1056/NEJMra1205750
4. Lazarowski E. R. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signalling. 2012; 8 (3): 359–373. https://doi.org/10.1007/s11302-012-9304-9
5. Faas M. M., Sáez T., de Vos P. Extracellular ATP and adenosine: The Yin and Yang in immune responses? Molecular Aspects of Medicine. 2017; 55: 9–19. https://doi.org/10.1016/j.mam.2017.01.002
6. Surprenant A., North R. A. Signaling at purinergic P2X receptors. Annual Review of Physiology. 2009; 71: 333–359. https://doi.org/10.1146/annurev.physiol.70.113006.100630
7. Kaniewska E., Sielicka A., Sarathchandra P., Pelikant-Małecka I., Olkowicz M., Słomińska E. M., et al. Immunohistochemical and functional analysis of ectonucleoside triphosphate diphosphohydrolase 1 (CD39) and ecto-5’-nucleotidase (CD73) in pig aortic valves. Nucleosides, Nucleotides & Nucleic Acids. 2014; 33 (4–6): 305–312. https://doi.org/10.1080/15257770.2014.885985
8. Orriss I., Syberg S., Wang N., Robaye B., Gartland A., Jorgensen N., Arnett T., Boeynaems J. M. Bone phenotypes of P2 receptor knockout mice. Frontiers in Bioscience-Scholar. 2011; 3 (3): 1038–1046. https://doi.org/10.2741/208
9. Ledderose C., Bao Y., Kondo Y., Fakhari M., Slubowski C., Zhang J., Junger W. G. Purinergic signaling and the immune response in sepsis: a review. Clinical Therapeutics. 2016; 38 (5): 1054–1065. https://doi.org/10.1016/j.clinthera.2016.04.002
10. Ledderose C., Bao Y., Ledderose S., Woehrle T., Heinisch M., Yip L., et al. Mitochondrial dysfunction, depleted purinergic signaling, and defective T cell vigilance and immune defense. The Journal of Infectious Diseases. 2016; 213 (3): 456–464. https://doi.org/10.1093/infdis/jiv373
11. Colgan S. P., Eltzschig H. K., Eckle T., Thompson L. F. Physiological roles for ecto-5’-nucleotidase (CD73). Purinergic Signalling. 2006; 2: 351–360. https://doi.org/10.1007/s11302-005-5302-5
12. Bynoe M. S., Waickman A. T., Mahamed D. A., Mueller C., Mills J. H., Czopik A. CD73 is critical for the resolution of murine colonic inflammation. BioMed Research International. 2012; 2012:260983. https://doi.org/10.1155/2012/260983
13. Muller-Haegele S., Muller L., Whiteside T. L. Immunoregulatory activity of adenosine and its role in human cancer progression. Expert Review of Clinical Immunology. 2014; 10 (7): 897–914. https://doi.org/10.1586/1744666x.2014.915739
14. Chen J.-F., Eltzschig H. K., Fredholm B. B. Adenosine receptors as drug targets – what are the challenges? Nature Reviews. Drug Discovery. 2013; 12 (4): 265–286. https://doi.org/10.1038/nrd3955
15. Chrobak P., Charlebois R., Rejtar P., El Bikai R., Allard B., Stagg J. CD73 plays a protective role in collagen-induced arthritis. The Journal of Immunology. 2015; 194 (6): 2487–2492. https://doi.org/10.4049/jimmunol.1401416
16. Deaglio S., Dwyer K. M., Gao W., Friedman D., Usheva A., Erat A., et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. Journal of Experimental Medicine. 2007; 204 (6): 1257–1265. https://doi.org/10.1084/jem.20062512
17. Dwyer K. M., Deaglio S., GaoW., Friedman D., StromT. B., Robson S. C. CD39 and control of cellular immune responses. Purinergic Signalling. 2007; 3: 171–180. https://doi.org/10.1007/s11302-006-9050-y
18. Titov V. N. The significance of macrophages in the onset of inflammation; the effects of interleukin-1, interleukin-6 and the activity of hypothalamohypophysis system (a survey). Russian Clinical Laboratory Diagnostics. 2003; (12): 3–10. https://elibrary.ru/ojcjtb (in Russ.)
19. Choy E. H. S., Panayi G. S. Cytokine pathways and joint inflammation in rheumatoid arthritis. New England Journal of Medicine. 2001; 344 (12): 907–916. https://doi.org/10.1056/nejm200103223441207
20. Danilov L. N., Lebedeva E. S., Dvorakovskaya I. V., Simbirtsev A. S., Ilcovich M. M. Effect of interleukin 1 receptor antagonist on the development of oxidative stress in lungs. Cytokines and Inflammation. 2003; 2 (4): 14–20. https://elibrary.ru/gxsgmp (in Russ.)
21. Starikova Е. A., Amtchislavsky E. I., Sokolov D. I., Freidlin I. S., Polosukhina E. R., Baryshnikov A. Yu. Deviations of endothelial cells surface phenotype under the influence of pro-inflammatory and anti-inflammatory cytokines. Medical Immunology (Russia). 2003; 5 (1-2): 39–48. https://elibrary.ru/jtymrn (in Russ.)
22. Serebrennikova S. N., Seminsky I. Zh. The role of cytokines in the inflammatory process (part 1). Sibirskii meditsinskii zhurnal. 2008; (6): 5–8. https://elibrary.ru/jwbssl (in Russ.)
23. Lysikova M., Wald M., Masinovsky Z. Mechanisms of inflammatory reaction and proteolytic enzymes influence upon them. Cytokines and Inflammation. 2004; 3 (3): 48–53. https://elibrary.ru/hrrkot (in Russ.)
24. Totolyan A. A. Rol’ khemokinov I ikh retseptorov v immunoregulyatsii = The role of chemokines and their receptors in immunoregulation. Immunologiya. 2001; 22 (5): 7–15. (in Russ.)
25. Shaimova V. A. The role of inflammatory cytokines in eye diseases. Cytokines and Inflammation. 2005; 4 (2): 13–15. https://elibrary.ru/hrrled (in Russ.)
26. Jersmann H. P. А., Hii C. S. Т., Ferrante J. V., Ferrante A. Bacterial lipopolysaccharide and tumor necrosis factor alpha synergistically increase expression of human endothelial adhesion molecules through activation of NF-κB and p38 mitogen-activated protein kinase signaling pathways. Infection and Immunity. 2001; 69 (3): 1273–1279. https://doi.org/10.1128/iai.69.3.1273-1279.2001
27. Lum H., Roebuck K. A. Oxidant stress and endothelial cell dysfunction. American Journal of Physiology. Cell Physiology. 2001; 280 (4): C719–C741. https://doi.org/10.1152/ajpcell.2001.280.4.c719
28. Starikova E. A., Freidlin I. S., Sokolov D. I., Selkov S. A. Changes of properties of endothelial cells, line EA.hy 926, caused by TNFα, IFNγ and IL-4. Immunologiya. 2005; 26 (2): 83–87. https://elibrary.ru/hrwxyb (in Russ.)
29. Belova O. V., Arion V. Y., Sergienko V. I. Role of cytokines in immunological function of the skin. Immunopathology, allergology, infectology. 2008; (1): 41–55. https://elibrary.ru/jvvrav (in Russ.)
30. Sarlos P., Kovesdi E., Magyari L., Banfai Z., Szabo A., Javorhazy A., Melegh B. Genetic update on inflammatory factors in ulcerative colitis: Review of the current literature. World Journal of Gastrointestinal Pathophysiology. 2014; 5 (3): 304–321. https://doi.org/10.4291/wjgp.v5.i3.304
31. Vasileva G. I., Ivanova I. A., Tyukavkina S. Yu. Kooperativnoe vzaimodeistvie mono- i polinuklearnykh fagotsitov, oposredovannoe mono- i neitrofilokinami = Cooperative interaction of mono- and polynuclear phagocytes mediated by mono- and neutrophilokines. Immunologiya. 2000; 21 (5): 11–17. (in Russ.)
32. Heydtmann M., Adams D. H. Chemokines in the immunopathogenesis of hepatitis С infection. Hepatology. 2009; 49 (2): 676–688. https://doi.org/10.1002/hep.22763
33. Sysoyev K. A., Tchukhlovin A. B., Totolyan A. A. The diagnostic role of chemokines and their receptors under chronic hepatitis C. Clinical Laboratory Diagnostics. 2013; (2): 23–29. https://elibrary.ru/pycuoj (in Russ.)
34. Simbirtsev A. S. Cytokines – classification and biologic functions. Cytokines and Inflammation. 2004; 3 (2): 16–22. https://www.elibrary.ru/hrrmzv (in Russ.)
35. Ketlinskiy S. A., Simbirtsev A. S. Cytokines: monograph. Saint Petersburg: Foliant; 2008. 552 p. (in Russ.)
36. Immunology: practicum. Ed. by L. V. Kovalchuk, G. A. Ignatieva, L. V. Gankovskaya. Moscow: GEOTAR-Media; 2014. 174 p. (in Russ.)
37. Tengvall S., Che K. F., Lindén A. Interleukin-26: an emerging player in host defense and inflammation. Journal of Innate Immunity. 2016; 8 (1): 15–22. https://doi.org/10.1159/000434646
38. Glotov A. V., Potudanskaya M. G. Fundamentals of immunology, immunogenetics and immunobiotechnology: Part 1. General immunology: a textbook. Omsk: Omsk State University; 2009. 119 p. (in Russ.)
39. RyabovV. V., Gombozhapova A. E., Rogovskaya Yu. V., Ivanyuk E. E., Kzhyshkowska J. G., Karpov R. S. Functional plasticity of monocytes/macrophages in post-infarction cardiac regeneration and remodeling. Immunologiya. 2016; 37 (6): 305–311. https://elibrary.ru/xipgjd (in Russ.)
40. Potapnev M. P. Immune mechanisms of sterile inflammation. Immunologiya. 2015; 36 (5): 312–318. https://elibrary.ru/umtevn (in Russ.)
41. Nesterova I. V., Balmasova I. P., Kozlov V. A., Malova E. S., Sepiashvili R. I. Chronic fatigue syndrome and immune dysfunction in patients with recurrent viral infections: clinical immunologic characteristic and features of serotonin regulation. Cytokines and Inflammation. 2006; 5 (2): 3–14. https://elibrary.ru/tfvgux (in Russ.)
42. Yurova K. A., Khaziakhmatova O. G., Malashchenko V. V., Norkin I. K., Ivanov P. A., Khlusov I. A., et al. Cellular-molecular aspects of inflammation, angiogenesis and osteogenesis. A short review. Tsitologiya. 2020; 62 (5): 305–315. https://doi.org/10.31857/S0041377120050090 (in Russ.)
43. Zubova S. G., Bykova T. V. Regulation of the mTOR signaling pathway in macrophages in various pathologies. Tsitologiya. 2015; 57 (11): 755–760. https://elibrary.ru/uteazl (in Russ.)
44. Chesnokova N. P., Morrison V. V., Bizenkova M. N., Polutova N. V. Lektsiya 9. Vospalenie – kak tipovoi patologicheskii protsess, lezhashchii v osnove razvitiya razlichnykh nozologicheskikh form patologii = Lecture 9. Inflammation is a typical pathological process underlying the development of various nosological forms of pathology. Scientific Review. Abstract Journal. 2018; (1): 124–128. https://abstract.science-review.ru/ru/article/view?id=1877 (in Russ.)
45. Yarilin D. A. Role of tumor necrosis factor in the regulation of the inflammatory response of monocytes and macrophages. Immunologiya. 2014; 36 (4): 195–201. https://elibrary.ru/sjzplv (in Russ.)
46. Donina Zh. A., Baranova E. V., Aleksandrova N. P. A comparative assessment of effects of major mediators of acute phase response (IL-1, TNF-α, IL-6) on breathing pattern and survival rate in rats with acute progressive hypoxia. Journal of Evolutionary Biochemistry and Physiology. 2021; 57 (4): 936–944. https://doi.org/10.1134/S0022093021040177
47. Litvitsky P. F. Inflammation. Current Pediatrics. 2006; 5 (4): 75–81. https://elibrary.ru/hyvrrn (in Russ.)
48. Chen J., Zhao Y., Liu Y. The role of nucleotides and purinergic signaling in apoptotic cell clearance – implications for chronic inflammatory diseases. Frontiers in Immunology. 2014; 5:656. https://doi.org/10.3389/fimmu.2014.00656
49. Eshmolov S. N., Sitnikov I. G., Melnikova I. M. The role of cytokines TNF-α, IFN-γ, IL-1, IL-4, IL-8 in the immune response in infectious lesions of CNS in children. Children Infections. 2018; 17 (1): 17–22. https://doi.org/10.22627/2072-8107-2018-17-1-17-22 (in Russ.)
50. Krenev I. A., Berlov M. N., Umnyakova E. S. Antimicrobial proteins and peptides of neutrophilic granulocytes as modulators of complement system. Immunologiya. 2021; 42 (4): 426–433. https://doi.org/10.33029/0206-4952-2021-42-4-426-433 (in Russ.)
51. Belokrinitskaya T. Ye., Vitkovsky Yu. A., Ponomaryova Yu. N., Mochalova M. N., Lomneva G. M. TNFα and TGFβ in regulation of apoptosis and cell proliferation in cervical intra-epithelial neoplasia and carcinoma of uterine cervix. Cytokines and Inflammation. 2006; 5 (1): 31–33. https://elibrary.ru/tfvglh (in Russ.)
52. Zheleznikova G. F. The role of cytokines in pathogenesis and diagnosing of infectious diseases. Infektsionnye Bolezni(Infectious Diseases). 2008; 6 (3): 70–76. https://elibrary.ru/juigfv (in Russ.)
53. Sibiryak S. V. Cytokines as cytochrome P450-dependent monooxygenases regulators. Theoretical and applied aspects. Cytokines and Inflammation. 2003; 2 (2): 12–22. https://elibrary.ru/hrrjut (in Russ.)
54. Berezhnaya N. M. Cytokine network regulation in pathology: rapid progress in knowledge and inevitable questions. Cytokines and Inflammation. 2007; 6 (2): 26–34. https://elibrary.ru/rzmyrj (in Russ.)
55. Vasileva G. I., Ivanova I. A., Tyukavkina S. Yu. Tsitokiny – obshchaya sistema gomeostaticheskoi regulyatsii kletochnykh funktsii = Cytokines – a general system of homeostatic regulation of cell functions. Tsitologiya. 2001; 43 (12): 1101–1111. https://elibrary.ru/cvdbkn (in Russ.)
Review
For citations:
Mosyagin V.V., Isakova E.A., Ryzhkova G.F., Mosyagina I.P. The role of purinergic signaling and cytokine network in the inflammatory process. Veterinary Science Today. 2025;14(3):263-273. (In Russ.) https://doi.org/10.29326/2304-196X-2025-14-3-263-273