Analysis of RASFF notifications for mycotoxins in 2020–2022
https://doi.org/10.29326/2304-196X-2025-14-2-201-209
Abstract
Introduction. Mycotoxins are secondary metabolites of various fungi. The contamination with mycotoxins is subject to control. Pursuant to the accepted classification in accordance with Council Directive 96/23/EC they belong to group B3: “Other substances and environmental contaminants”. Information on detected exceedances of maximum permitted levels in feed and food is notified to the RASFF and ACN information systems, which operate across the European Union.
Objective. Analysis of RASFF and ACN notifications for mycotoxins in food and feed in 2020–2022.
Materials and methods. 1,335 publications on exceedances of maximum permitted levels of mycotoxins (aflatoxins, ochratoxin A, deoxynivalenol, zearalenone and patulin) in food and feed have been analysed.
Results. Breakdown of mycotoxin notifications during the analyzed period was as follows: aflatoxins – 87.1%, ochratoxin A – 11.6%, patulin – 0.6%, deoxynivalenol – 0.5%, zearalenone – 0.2%. Aflatoxin contaminations were most often reported in groundnuts (764 notifications), ochratoxin A in dried figs (43 notifications), patulin in apple juice (6 notifications), zearalenone and deoxynivalenol in cereals and bakery products. Feedstuffs and feed ingredients were found to be contaminated only with aflatoxins (33 notifications), and 66.7% of notifications accounted for groundnuts intended for feeding. An analysis of mycotoxin contamination dynamics demonstrated that there was an increase in the number of notifications in 2021 and 2022.
Conclusion. According to RASFF and ACN notifications, mycotoxins were the third most notified hazard category in 2020–2022. Elevated mycotoxin concentrations were detected exclusively in plant products.
Keywords
About the Authors
S. S. IbragimovaRussian Federation
Selime S. Ibragimova, Leading Veterinarian, Microbiological Testing Unit,
21a, Shosseynaya str., Simferopol 295494, Republic of Crimea.
O. V. Pruntova
Russian Federation
Olga V. Pruntova, Dr. Sci. (Biology), Professor, Chief Researcher, Information and Analysis Centre,
Yur’evets, Vladimir 600901.
N. B. Shadrova
Russian Federation
Natalya B. Shadrova, Cand. Sci. (Biology), Head of Department for Microbiological Testing,
Yur’evets, Vladimir 600901.
T. V. Zhbanova
Russian Federation
Tatyana V. Zhbanova, Cand. Sci. (Biology), Junior Researcher, Education and Scientific Support Department,
Yur’evets, Vladimir 600901.
References
1. Popov V. S., Samburov N. V., Vorobyeva N. V. Mycotoxicosis challenges in current conditions and principles of preventive solutions: Monograph. Kursk: Planeta+; 2018. 158 р. (in Russ.)
2. Koshchaev A. G., Khmara I. V. Peculiarities of seasonal mycotoxin contamination of raw grain and mixed fodders in Krasnodar Region. Veterinaria Kubani. 2013; (2): 20–22. https://elibrary.ru/pzzawr (in Russ.)
3. Palumbo R., Crisci A., Venâncio A., Cortiñas Abrahantes J., Dorne J.-L., Battilani P., Toscano P. Occurrence and co-occurrence of mycotoxins in cereal-based feed and food. Microorganisms. 2020; 8 (1):74. https://doi.org/10.3390/microorganisms8010074
4. Moretti A., Pascale M., Logrieco A. F. Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science & Technology. 2019; 84: 38–40. https://doi.org/10.1016/j.tifs.2018.03.008
5. Bondy G. S., Pestka J. J. Immunomodulation by fungal toxins. Journal of Toxicology and Environmental Health, Part B. 2000; 3 (2): 109–143. https://doi.org/10.1080/109374000281113
6. Antipov V. A., Vasiliev V. F., Kutishcheva T. G. Mikotoksikozy – vazhnaya problema zhivotnovodstva = Mycotoxicosis is a major problem of livestock production. Veterinariya. 2007; (11): 7–9. https://elibrary.ru/icciyz (in Russ.)
7. Bryden W. L. Mycotoxin contamination of the feed supply chain: implications for animal productivity and feed security. Animal Feed Science and Technology. 2012; 173 (1–2): 134–158. https://doi.org/10.1016/j.anifeedsci.2011.12.014
8. Gallo A., Giuberti G., Frisvad J. C., Bertuzzi T., Nielsen K. F. Review on mycotoxin issues in ruminants: occurrence in forages, effects of mycotoxin ingestion on health status and animal performance and practical strategies to counteract their negative effects. Toxins. 2015; 7 (8): 3057–3111. https://doi.org/10.3390/toxins7083057
9. Ovchinnikov R. S., Kapustin A. V., Laishevtsev A. I., Savinov V. A. Mycotoxins and mycotoxicoses of animals as an actual problem of agriculture. Russian Journal “Problems of Veterinary Sanitation, Hygiene and Ecology”. 2018; (1): 114–123. https://elibrary.ru/ekrkuj (in Russ.)
10. Kononenko G. P., Burkin A. A. Mycotoxin contaminations in commercially used hay. Agricultural Biology. 2014; (4): 120–126. https://doi.org/10.15389/agrobiology.2014.4.120rus (in Russ.)
11. Murugesan G. R., Ledoux D. R., Naehrer K., Berthiller F., Applegate T. J., Grenier B., et al. Prevalence and effects of mycotoxins on poultry health and performance, and recent development in mycotoxin counteracting strategies. Poultry Science. 2015; 94 (6): 1298–1315. https://doi.org/10.3382/ps/pev075
12. Fink-Gremmels J. Mycotoxins: their implications for human and animal health. Veterinary Quarterly. 1999; 21 (4): 115–120. https://doi.org/10.1080/01652176.1999.9695005
13. Venkatesh N., Keller N. P. Mycotoxins in conversation with bacteria and fungi. Frontiers in Microbiolоgy. 2019; (10):403. https://doi.org/10.3389/fmicb.2019.00403
14. Grenier B., Applegate T. J. Modulation of intestinal function following mycotoxin ingestion: meta-analysis of published experiments in animals. Toxins. 2013; 5 (2): 396–430. https://doi.org/10.3390/toxins5020396
15. Streit E., Schatzmayr G., Tassis P., Tzika E., Marin D., Taranu I., et al. Current situation of mycotoxin contamination and co-occurrence in animal feed – focus on Europe. Toxins. 2012; 4 (10): 788–809. https://doi.org/10.3390/toxins4100788
16. Evglevsky Al. A., Evglevskaya E. P., Mikhaylova I. I., Erizhenskaya N. F., Suleymanova T. A., Mikhailova O. N. Mycotoxicoses of cows in industrial livestock: causes, consequences and effective approaches for the prevention and treatment. Russian Journal of Veterinary Pathology. 2018; (1): 47–53. https://elibrary.ru/wbdqgt (in Russ.)
17. Kononenko G. P., Burkin А. А., Zotova Ye. V. Mycotoxicological monotoring. Part 1. Complete mixed feed for pig and poultry (2009–2018). Veterinary Science Today. 2020; (1): 60–65. https://doi.org/10.29326/2304-196X-2020-1-32-60-65
18. BIOMIN. Science & Solutions. 2015; (19). https://issuu.com/biomin/docs/mag_scisol_19_p_ru_0415_original_88
19. Koshchaev A. G., Khmara I. N., Koshchaeva O. V., Khathakumov S. S., Eliseev M. A. Sesonal factors affecting production of mycotoxins in grain raw material. Polythematic online scientific journal of Kuban State Agrarian University. 2014; (96). https://elibrary.ru/typfmj (in Russ.)
20. World Health Organization. Mycotoxins. https://www.who.int/newsroom/fact-sheets/detail/mycotoxins
21. Alshannaq A., Yu J.-H. Occurrence, toxicity, and analysis of major mycotoxins in food. International Journal of Environmental Research and Public Health. 2017; 14 (6):632. https://doi.org/10.3390/ijerph14060632
22. Marin S., Ramos A. J., Cano-Sancho G., Sanchis V. Mycotoxins: occurrence, toxicology, and exposure assessment. Food and Chemical Toxicology. 2013; 60: 218–237. https://doi.org/10.1016/j.fct.2013.07.047
23. Tremasov M. Ya., Novikov V. A., Konyukhova V. A., Norkova I. A., Sofronov P. V., Semenov E. I., Gizatullin R. R. Sovmestnoe deistvie mikotoksina T-2 i kadmiya na zhivotnykh = Synergistic effect of T-2 mycotoxin and cadmium on animals. Veterinarian. 2005; (2): 9–11. https://elibrary.ru/jwukfx (in Russ.)
24. Serrano A. B., Capriotti A. L., Cavaliere C., Piovesana S., Samperi R., Ventura S., Laganà A. Development of a rapid LC-MS/MS method for the determination of emerging Fusarium mycotoxins enniatins and beauvericin in human biological fluids. Toxins. 2015; 7 (9): 3554–3571. https://doi.org/10.3390/toxins7093554
25. Wu F. Global impacts of aflatoxin in maize: trade and human health. World Mycotoxin Journal. 2015; 8 (2): 137–142. https://doi.org/10.3920/WMJ2014.1737
26. Adegbeye M. J., Reddy P. R. K., Chilaka C. A., Balogun O. B., Elghandour M. M. M. Y., Rivas-Caceres R. R., Salem A. Z. M. Mycotoxin toxicity and residue in animal products: prevalence, consumer exposure and reduction strategies – a review. Toxicon. 2020; 177: 96–108. https://doi.org/10.1016/j.toxicon.2020.01.007
27. Battilani P., Toscano P., Van der Fels-Klerx H. J., Moretti A., Camardo Leggieri M., Brera C., et al. Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific Reports. 2016; 6 (1):24328. https:// doi.org/10.1038/srep24328
28. Bryden W. L. Food and feed, mycotoxins and the perpetual pentagram in a changing animal production environment. Animal Production Science. 2012; 52 (7): 383–397. https://doi.org/10.1071/AN12073
29. Burdov L. G., Tremasova A. M. By monitoring zearalenone in the feeds of the Udmurt Republic. Veterinarian. 2011; (5): 12–13. https://elibrary.ru/oildux (in Russ.)
30. Pestka J. J. Deoxynivalenol: mechanisms of action, human exposure, and toxicological relevance. Archives of Toxicology. 2010; 84 (9): 663–679. https://doi.org/10.1007/s00204-010-0579-8
31. Jia R., Ma Q., Fan Y., Ji C., Zhang J, Liu T., Zhao L. The toxic effects of combined aflatoxins and zearalenone in naturally contaminated diets on laying performance, egg quality and mycotoxins residues in eggs of layers and the protective effect of Bacillus subtilis biodegradation product. Food and Chemical Toxicology. 2016; 90: 142–150. https://doi.org/10.1016/j.fct.2016.02.010
32. Peillod C., Laborde M., Travel A., Mika A., Bailly J. D., Cleva D., et al. Toxic effects of fumonisins, deoxynivalenol and zearalenone alone and in combination in ducks fed the maximum EU tolerated level. Toxins. 2021; 13 (2):152. https://doi.org/10.3390/toxins13020152
33. Kononenko G. P., Burkin A. A. About fusariotoxins contamination of cereals used for fodder. Agricultural Biology. 2009; 44 (4): 81–88. https:// elibrary.ru/kvczlf (in Russ.)
34. Vidal A., Ouhibi S., Ghali R., Hedhili A., De Saeger S., De Boevre M. The mycotoxin patulin: an updated short review on occurrence, toxicity and analytical challenges. Food and Chemical Toxicology. 2019; 129: 249–256. https://doi.org/10.1016/j.fct.2019.04.048
35. Semyonova S. A., Potekhina R. M., Semyonov E. I., Valiev A. R., Mishina N. N., Khusainov I. T. Toxicity evaluation of fodder from various regions of the Russian Federation. Scientific notes Kazan Bauman State Academy of Veterinary Medicine. 2015; 224 (4): 196–199. https://elibrary.ru/uqethx (in Russ.)
36. Semenov E. I., Tremasov M. Y., Papunidi K. H., Nikitin A. I., Mishina N. N., Tanaseva S. A., et al. Guidelines for diagnosis, preventiom and treatment of animal mycotoxicosis. Moscow: Russian Research Institute of Information and Technical and Economic Studies on Engineering and Technical Provision of Argo-Industrial Complex; 2017; 3–8. https://elibrary.ru/docmhn (in Russ.)
37. Federal Service for Veterinary and Phytosanitary Supervision (Rosselkhoznadzor). Monitoring. https://fsvps.gov.ru/monitoring (in Russ.)
38. Smajhel S. Ye., Shadrova N. B. Analysis of Salmonella spp. detections in European Union countries according to RASFF database. Ve terinary Science Today. 2018; (4): 12–20. https://doi.org/10.29326/2304196X-2018-4-27-12-20
39. Sedik D., Ulbricht C., Dzhamankulov N. Control system food safety in the European Union and the Eurasian Economic Union. Trade Policy. 2016; (2): 41–83. https://elibrary.ru/ytfivh (in Russ.)
40. Rapid Alert System for Food and Feed (RASFF). https://ec.europa.eu/food/safety/rasff_en
41. Völkel I., Schröer-Merker E., Czerny C.-P. The carry-over of mycotoxins in products of animal origin with special regard to its implications for the European food safety legislation. Food and Nutrition Sciences. 2011; 2 (8): 852–867. https://doi.org/10.4236/fns.2011.28117
42. European Commission: Directorate-General for Health and Consumers. Rapid Alert System for Food and Feed (RASFF) – 30 years of keeping consumers safe. Luxembourg: Publications Office of the European Union; 2009. 40 p. https://data.europa.eu/doi/10.2772/10448
43. European Food Safety Authority (EFSA). https://www.efsa.europa.eu/en/efsawho/scpanels.htm
44. European Commission. Food Safety. https://food.ec.europa.eu/index_en
45. The Rapid Alert System for Food and Feed (RASFF) – Annual Report 2020. Luxembourg: Publications Office of the European Union; 2021. 35 р. https://doi.org/10.2875/259374
46. Alert and Cooperation Network – Annual Report 2021. Luxembourg: Publications Office of the European Union; 2022. 25 р. https://doi.org/10.2875/328358
47. Alert and Cooperation Network – Annual Report 2022. Luxembourg: Publications Office of the European Union; 2023. 21 р. https://doi.org/10.2875/70506
48. European Commission. RASFF Window. NOTIFICATION 2022.6974. https://webgate.ec.europa.eu/rasff-window/screen/notification/582640
49. Sedova I. B., Zakharova L. P., Chalyy Z. A., Tutelyan V. A. Myco toxin screening in food grain produced in the Russian Federation in 2020. Immunopathology, allergology, infectology. 2023; (2): 77–85. https://doi.org/10.14427/jipai.2023.2.77 (in Russ.)
50. Gerunov T. V., Gerunova L. K., Simonova I. A., Kryuchek Ya. O. Combined damage to feed by mycotoxins as a risk factor for development of multiple pathologies in animals. Vestnik of Omsk SAU. 2022; (4): 116–123. https://doi.org/10.48136/2222-0364_2022_4_116 (in Russ.)
Review
For citations:
Ibragimova S.S., Pruntova O.V., Shadrova N.B., Zhbanova T.V. Analysis of RASFF notifications for mycotoxins in 2020–2022. Veterinary Science Today. 2025;14(2):201-209. https://doi.org/10.29326/2304-196X-2025-14-2-201-209