Preview

Veterinary Science Today

Advanced search

Identification of Escherichia coli, Escherichia albertii, Proteus vulgaris biofilms detected in poultry with respiratory and gastrointestinal diseases

https://doi.org/10.29326/2304-196X-2025-14-2-186-193

Abstract

Introduction. When the body resistance-associated compensatory mechanisms are impaired or evolutionarily developed microbiocenoses are changed the quorum sensing signaling molecules facilitates excessive growth of pathogenic microorganisms. Antibacterial potential of inhibitors of intercellular communication molecule synthesis is achieved through reducing the microorganism adhesion and, consequently, in vivo and in vitro contamination.

Objective. Study of the dynamics of morphometric and densitometric parameters of biofilms formed by Escherichia coli, Escherichia albertii, Proteus vulgaris isolates identified in poultry with respiratory and gastrointestinal diseases.

Materials and methods. Dynamics of the biofilms formed by reference strains and isolates recovered from pathological samples from ROSS-308 chickens at the age of 40–42 weeks (n = 20) were studied. The sample optical densities were determined using Immunochem-2100 photometric analyzer (HTI, USA), wavelength 580 nm (OD580). Morphometric parameters were recorded at ≥ 90.0% reliable frequency in the field of view of Н604 Trinocular Unico optical microscope (United Products & Instruments Inc., USA) and Hitachi TM3030 Plus scanning electron microscope (Hitachi, Japan).

Results. Escherichia coli, Escherichia albertii, and Proteus vulgaris were isolated from pathological samples from the poultry with catarrhal hemorrhagic aerosacculitis, hemorrhagic enteritis, fibrinous polyserositis and splenomegaly signs and then identified. Direct correlations (r = 0.91) between morphometric and densitometric parameters depending on the cultivation time were established. Cells with defective cell walls, spheroplasts, needle-like and giant structures as well as revertant cells dominated during heterogeneous population dispersion.

Conclusion. General patterns of the heterogeneous microorganism population development are mediated by adhesion, synthesis of exocellular molecules, intensive cell proliferation and differentiation depending on the cell cycle stage.

About the Authors

E. M. Lenchenko
Russian Biotechnological University
Russian Federation

Ekaterina M. Lenchenko, Dr. Sci. (Veterinary Medicine), Professor, Department of Veterinary Medicine, 

11, Volokolamskoe highway, Moscow 125080.



V. V. Ponomarev
Russian Biotechnological University
Russian Federation

Vladislav V. Ponomarev, Postgraduate Student, Department of Veterinary Medicine, 

11, Volokolamskoe highway, Moscow 125080.



N. P. Sachivkina
Peoples’ Friendship University of Russia named after Patrice Lumumba
Russian Federation

Nadezda P. Sachivkina, Cand. Sci. (Biology), Associate Professor, Department of Veterinary Medicine, Agrarian and Technological Institute, 

6, Miklukho-Maklaya str., Moscow 117198.



References

1. Janda J. M., Abbott S. L. The changing face of the family Enterobacteriaceae (Order: “Enterobacterales”): New members, taxonomic issues, geographic expansion, and new diseases and disease syndromes. Clinical Microbiology Reviews. 2021; 34 (2):e00174-20. https://doi.org/10.1128/cmr.00174-20

2. Mirzaei A., Nasr Esfahani B., Ghanadian M., Moghim S. Alhagi maurorum extract modulates quorum sensing genes and biofilm formation in Proteus mirabilis. Scientific Reports. 2022; 12 (1):13992. https://doi.org/10.1038/s41598-022-18362-x

3. Muchaamba F., Barmettler K., Treier A., Houf K., Stephan R. Microbiology and epidemiology of Escherichia albertii – an emerging elusive foodborne pathogen. Microorganisms. 2022; 10 (5):875. https://doi.org/10.3390/microorganisms10050875

4. Hirose S., Konishi N., Sato M., Suzumura K., Obata H., Ohtsuka K., et al. Growth and survival of Escherichia albertii in food and environmental water at various temperatures. Journal of Food Protection. 2024; 87 (4):100249. https://doi.org/10.1016/j.jfp.2024.100249

5. WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: WHO; 2024. https://www.who.int/publications/i/item/9789240093461

6. Khairullah A. R., Afnani D. A., Riwu K. H. P., Widodo A., Yanestria S. M., Moses I. B., et al. Avian pathogenic Escherichia coli: epidemiology, virulence and pathogenesis, diagnosis, pathophysiology, transmission, vaccination, and control. Veterinary World. 2024; 17 (12): 2747–2762. https://doi.org/10.14202/vetworld.2024.2747-2762

7. Nawaz S., Wang Z., Zhang Y., Jia Y., Jiang W., Chen Z., et al. Avian pathogenic Escherichia coli (APEC): current insights and future challenges. Poultry Science. 2024; 103 (12):104359. https://doi.org/10.1016/j.psj.2024.104359

8. Javadov E. J., Novikova O. B., Kraskov D. A., Berezkin V. A. Bolezni ptits, vyzyvaemye uslovno-patogennoi mikrofloroi = Avian diseases caused by opportunistic microorganisms. Effectivnoe zhivotnovodstvo. 2023; (6): 8–12. https://doi.org/10.24412/cl-33489-2023-6-8-12 (in Russ.)

9. Gerasimova A. O., Novikova O. B., Savicheva A. A. Avian colibacillosis – current aspects. Veterinary Science Today. 2023; 12 (4): 284–292. https://doi.org/10.29326/2304-196X-2023-12-4-284-292

10. Kurmakaeva T. V., Kozak S. S., Baranovich E. S. On occurrence of some avian bacterial diseases and biosafety provision. Veterinary Science Today. 2024; 13 (2): 171–176. https://doi.org/10.29326/2304196X-2024-13-2-171-176

11. Makavchik S. A., Smirnova L. I., Sukhinin A. A., Kuzmin V. A. Species diversity of dominant etiologically significant bacteria circulating in industrial poultry. International Journal of Veterinary Medicine. 2022; (1): 22–26. https://doi.org/10.52419/issn2072-2419.2022.1.22 (in Russ.)

12. Tambiev T. S., Tambieva Yu. G., Duletov E. G., Fedorov V. Kh., Tazayan A. N., Fedyuk V. V., Shlychkov A. E. Antimicrobial activity of phytogenic drugs against conditionally pathogenic intestinal microflora of chickens. Actual Questions of Veterinary Biology. 2023; (2): 27–31. https://doi.org/10.24412/2074-5036-2023-2-27-31 (in Russ.)

13. Pancratov S. V., Rozhdestvenskaya T. N., Sukhinin A. A., Ruzina A. V. Poultry respiratory syndrome. Etiology. Diagnostics. Measures of control and prevention. Poultry & Chicken Products. 2021; (4): 34–36. https://elibrary.ru/tfcyys (in Russ.)

14. Isakova M. N., Sokolova O. V., Bezborodova N. A., Krivonogova A. S., Isaeva A. G., Zubareva V. D. Antimicrobial resistance in clinical Escherichia coli isolates obtained from animals. Veterinary Science Today. 2022; 11 (1): 14–19. https://doi.org/10.29326/2304-196X-2022-11-1-14-19

15. Konishcheva A. S., Leshcheva N. A., Pleshakova V. I. Pathogens microbiological spectrum in gastrointestinal pathology in animals. Bulletin KrasSAU. 2022; (2): 106–112. https://doi.org/10.36718/1819-4036-2022-2106-112 (in Russ.)

16. Pruntova O. V., Russaleyev V. S., Shadrova N. B. Current understanding of antimicrobial resistance mechanisms in bacteria (analytical review). Veterinary Science Today. 2022; 11 (1): 7–13. https://doi.org/10.29326/2304196X-2022-11-1-7-13

17. Pirozhkov M. K., Galiakbarova A. A., Pimenov N. V. The current state of the domestic market for vaccines against colibacillosis of animals. Veterinariya, Zootekhniya i Biotekhnologiya. 2022; (2): 12–20. https://doi.org/10.36871/vet.zoo.bio.202202002 (in Russ.)

18. Svetoch E. A., Eruslanov B. V., Mitsevich I. P., Khramov M. V., Pereskokova E. S., Kartsev N. N., Fursova N. K. The algorithm for development and characterization of diagnostic latex test-systems producing at the State Research Center for Applied Microbiology and Biotechnology (part 2). Bacteriology. 2023; 8 (3): 56–67. https://obolensk.org/bacteriology/archive-numbers/item/453-svetoch2023-8-3-p56-67 (in Russ.)

19. Lenchenko E., Sachivkina N., Lobaeva T., Zhabo N., Avdonina M. Bird immunobiological parameters in the dissemination of the biofilm-forming bacteria Escherichia coli. Veterinary World. 2023; 16 (5): 1052–1060. https:// doi.org/10.14202/vetworld.2023.1052-1060

20. Peng L.-Y., Yuan M., Wu Z.-M., Song K., Zhang C.-L., An Q., et al. Anti- bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Scientific Reports. 2019; 9 (1):4063. https://doi.org/10.1038/s41598-019-40684-6

21. Sachivkina N., Vasilieva E., Lenchenko E., Kuznetsova O., Karamyan A., Ibragimova A., et al. Reduction in pathogenicity in yeast-like fungi by farnesol in quail model. Animals. 2022; 12 (4):489. https://doi.org/10.3390/ani12040489

22. ATCC: The Global Bioresource Center. https://www.atcc.org/products/25922

23. Methodical guidelines for pathomorphological diagnosis of animal, avian, and fish diseases in veterinary laboratories: approved by the Veterinary Department of the Ministry of Agriculture of the Russian Federation on 11 September 2000, No. 13-7-2/2137. https://base.garant.ru/71878976 (in Russ.)

24. Illustrated atlas of avian diseases. Ed. B. F. Bessarabov. Moscow: Medol; 2006. 247 p. (in Russ.)

25. Volkov M. S., Irza V. N., Varkentin A. V., Rogolyov S. V., Andriyasov A. V. Results of scientific expedition to natural biotopes of the Republic of Tyva in 2019 with the purpose of infectious disease monitoring in wild bird populations. Veterinary Science Today. 2020; (2): 83–88. https://doi.org/10.29326/2304-196X-2020-2-33-83-88

26. Gromov I. N. Pathomorphological and differential diagnostics of poultry diseases affecting primarily intestines. Animal Agriculture and Vete ri nary Medicine. 2020; (2): 27–31. https://elibrary.ru/ofnxlc (in Russ.)

27. Methodical guidelines for bacteriological diagnosis of animal colibacillosis (escherichiosis): approved by the Veterinary Department of the Ministry of Agriculture of the Russian Federation on 27 July 2000 No. 13-7-2/2117. https://docs.cntd.ru/document/555906594 (in Russ.)

28. Isolation of bacteria from the animal gastrointestinal tract and identification thereof: methodical guidelines approved by the Veterinary Department of the Ministry of Agriculture of the Russian Federation on 11 May 2004, No. 13-5-02/1043. http://gost.gtsever.ru/Data2/1/4293723/4293723844.pdf (in Russ.)

29. Methodical guidelines for bacteriological diagnosis of mixed intestinal infection in young animals caused by pathogenic enterobacteria, approved by the Veterinary Department of the Ministry of Agriculture of the Russian Federation on 11 October 1999, No. 13-7-2/1759. https://base.garant.ru/71987758 (in Russ.)

30. Carter M. Q., Carychao D., Lindsey R. L. Conditional expression of flagellar motility, curli fimbriae, and biofilms in Shiga toxin-producing Escherichia albertii. Frontiers in Microbiology. 2024; 15:1456637. https://doi.org/10.3389/fmicb.2024.1456637

31. Lenchenko E., Sachivkina N., Petrukhina O., Petukhov N., Zharov A., Zhabo N., Avdonina M. Anatomical, pathological, and histological features of experimental respiratory infection of birds by biofilm-forming bacteria Staphylococcus aureus. Veterinary World. 2024; 17 (3): 612–619. https://doi.org/10.14202/vetworld.2024.612-619

32. Robé C., Blasse A., Merle R., Friese A., Roesler U., Guenther S. Low dose colonization of broiler chickens with ESBL-/AmpC-producing Escherichia coli in a seeder-bird model independent of antimicrobial selection pressure. Frontiers in Microbiology. 2019; 10:2124. https://doi.org/10.3389/fmicb.2019.02124

33. Lenchenko E., Lozovoy D., Strizhakov A., Vatnikov Yu., Byakhova V., Kulikov E., et al. Features of formation of Yersinia enterocolitica biofilms. Veterinary World. 2019; 12 (1): 136–140. https://doi.org/10.14202/vetworld.2019.136-140

34. Sivaranjani M., McCarthy M. C., Sniatynski M. K., Wu L., Dillon J. R., Rubin J. E., White A. P. Biofilm formation and antimicrobial susceptibility of E. coli associated with colibacillosis outbreaks in broiler chickens from Saskatchewan. Frontiers in Microbiology. 2022; 13:841516. https://doi.org/10.3389/fmicb.2022.841516

35. Helmy Y. A., Kathayat D., Deblais L., Srivastava V., Closs G. Jr., Tokarski R. J., et al. Evaluation of novel quorum sensing inhibitors targeting auto-inducer 2 (AI-2) for the control of avian pathogenic Escherichia coli infections in chickens. Microbiology Spectrum. 2022; 10 (3):e00286-22. https://doi.org/10.1128/spectrum.00286-22


Review

For citations:


Lenchenko E.M., Ponomarev V.V., Sachivkina N.P. Identification of Escherichia coli, Escherichia albertii, Proteus vulgaris biofilms detected in poultry with respiratory and gastrointestinal diseases. Veterinary Science Today. 2025;14(2):186-193. (In Russ.) https://doi.org/10.29326/2304-196X-2025-14-2-186-193

Views: 41


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)