Method of obtaining and storing hyperimmune anthrax serum
https://doi.org/10.29326/2304-196X-2023-12-3-215-221
Abstract
Anthrax is a highly dangerous disease of animals and humans caused by the spore-forming bacterium Bacillus anthracis. Currently, the disease is widespread in many countries of the world. Many regions of the Russian Federation are anthrax-endemic. A large number of anthrax treatment, diagnosis and prevention tools are developed using hyperimmune serum. Currently known commercial hyperimmune sera areproduced by 2-month long immunization of horses, which is a long and expensive process. This suggests the need to develop faster and cheaper ways to produce anti-anthrax hyperimmune sera; such possible ways became the objective of this study. A live culture of Bacillus anthracis 55-VNIIVViM vaccine strain, used to produce live vaccines against animal anthrax, was used in the experiments. Rabbits were used as animal models. Based on the findings the method of rabbit immunization was selected. The optimal method included intravenous injection of the antigen in increasing amounts according to the following scheme: injection I – 0.5 cm3 ; injection II – 1 cm3 ; injection III – 2 cm3 at a dose of 100 million mc/animal in 1 cm3 , with 4-day interval between injections. This scheme made it possible to produce the serum with a high antibody titer equal to 14 log2 . For long-term storage of the serum produced, the freeze-drying modes were optimized, giving 2% residual moisture content of the finished product. The analysis of the freeze-dried serum storage terms showed that the initial activity and physico-chemical properties of the product are maintained for 30 months.
About the Authors
S. V. IvanovaRussian Federation
Svetlana V. Ivanova, Candidate of Science (Biology), Head of the Center of Collective Use
Kazan, Republic of Tatarstan
L. A. Melnikova
Russian Federation
Lilia A. Melnikova, Candidate of Science (Veterinary Medicine), Associate Professor, Leading Researcher, Laboratory for Collection of Strains of Microorganisms
Kazan, Republic of Tatarstan
A. P. Rodionov
Russian Federation
Alexander P. Rodionov, Candidate of Science (Veterinary Medicine), Junior Researcher, Laboratory for Collection of Strains of Microorganisms
Kazan, Republic of Tatarstan
V. V. Evstifeev
Russian Federation
Vitaliy V. Evstifeev, Doctor of Science (Biology), Associate Professor, Chief Researcher, Department of Virological and Ultrastructural Research
Kazan, Republic of Tatarstan
References
1. Seid K., Shiferaw A. M., Yesuf N. N., Derso T., Sisay M. Livestock owners’ anthrax prevention practices and its associated factors in Sekota Zuria district, Northeast Ethiopia. BMC Vet. Res. 2020; 16 (1):39. DOI: 10.1186/ s12917-020-2267-0.
2. Ivanova S. V., Rodionov А. P., Melnikova L. А. Monitoring the potential hazards of anthrax outbreaks. Hippology and veterinary. 2021; 1 (39): 93–100. EDN: RBOFZY. (in Russ.)
3. Cossaboom C. M., Khaiseb S., Haufiku B., Katjiuanjo P., Kannyinga A., Mbai K., et al. Anthrax epizootic in wildlife, Bwabwata National Park, Namibia, 2017. Emerg. Infect. Dis. 2019; 25 (5): 947–950. DOI: 10.3201/eid2505.180867.
4. Muturi M., GachohiJ., Mwatondo A., Lekolool I., Gakuya F., Bett A., et al. Recurrent anthrax outbreaksin humans, livestock, and wildlife in the same locality, Kenya, 2014–2017. Am. J. Trop. Med. Hyg. 2018; 99 (4): 833–839. DOI: 10.4269/ajtmh.18-0224.
5. Mwakapeje E. R., Høgset S., Fyumagwa R., Nonga H. E., Mdegela R. H., Skjerve E. Anthrax outbreaks in the humans – livestock and wildlife interface areas of Northern Tanzania: a retrospective record review 2006–2016. BMC Public Health. 2018; 18:106. DOI: 10.1186/s12889-017-5007-z.
6. Noordhuizen J., Surborg H., Smulders F. J. On the efficacy of current biosecurity measures at EU bordersto prevent the transfer of zoonotic and livestock diseases by travellers. Vet. Q. 2013; 33 (3): 161–171. DOI: 10.1080/ 01652176.2013.826883.
7. WAHIS: World AnimalHealth Information System. Available at: https:// wahis.woah.org.
8. Ivanova S. V., Melnikova L. A., Rodionov A. P., Makaev Kh. N., Safina G. M., Murtazina G. Kh., et al. Analysis of the epizootic situation and improvement ofthe scheme forthe specific prevention of anthrax. Int. J. Res. Pharm. Sci. 2020; 11 (1): 949–952. DOI: 10.26452/ijrps.v11i1.1919.
9. Pisarenko S. V., Eremenko E. I., Ryazanova A. G., Kovalev D. A., Buravtseva N. P., Aksenova L. Yu., et al. Genotyping and phylogenetic location of one clinical isolate of Bacillus anthracisisolated from a human in Russia. BMC Microbiol. 2019; 19:165. DOI: 10.1186/s12866-019-1542-3.
10. Liskova E. A., Egorova I. Y., Selyaninov Y. O., Razheva I. V., Gladkova N. A., Toropova N. N., et al. Reindeer anthrax in the Russian Arctic, 2016: climatic determinants of the outbreak and vaccination effectiveness. Front. Vet. Sci. 2021; 8:668420. DOI: 10.3389/fvets.2021.668420.
11. Ezhova E., Orlov D., Suhonen E., Kaverin D., Mahura A., GennadinikV., et al. Climatic factorsinfluencing the anthrax outbreak of 2016 in Siberia, Russia. Ecohealth. 2021; 18 (2): 217–228. DOI: 10.1007/s10393-021-01549-5.
12. Ivanov A. V., Makaev Kh. N., Melnikova L. A., Barbarova L. A., Murtazina G. Kh., Ivanova S. V., Khisamutdinov A. G. Method of obtaining erythrocyte antigen of anthrax antigen, method of obtaining control positive serum for kit of detection of antibodies in the blood serum of animals vaccinated against anthrax, in the reaction of indirect hemagglutination and kit for detection of antibodies. Patent No. 2599035 Russian Federation, Int. Cl. C12N 1/20 (2006.01), G01N 33/531 (2006.01). FSBSI “FCTRBS-ARRVI”. Application: 2015128403/15. Date of filing: 13.07.2015. Date of publication: 10.10.2016. Bull. No. 28. (in Russ.)
13. Romanov G. I., Manichev A. A., Salenko L. S., Stepanova V. V., Zakharov D. G., Komelina L. I., et al. Method for producing serum against anthrax. Patent No. 1347224 Russian Federation, Int. Cl. 61 К39/40. Vsesojuznyj gosudarstvennyj nauchnokontrol’nyj institut vetpreparatov. Application: 4066843/13. Date of filing: 08.05.1986. Date of publication: 20.11.1995. (in Russ.)
14. Bavrina А. P. Modern rules for the use of parametric and nonparametric tools in the statistical analysis of biomedical data. Medical Almanac. 2021; 1 (66): 64–73. EDN: IZXMBZ. (in Russ.)
15. Fissore D., McCoy T. Editorial: freeze-drying and process analytical technology for pharmaceuticals. Front. Chem. 2018; 6:622. DOI: 10.3389/fchem.2018.00622.
16. Kelly C. D., O’Loughlin C., Gelder F. B., Peterson J. W., Sower L. E., Cirino N. M. Rapid generation of an anthrax immunotherapeutic from goats using a novel non-toxic muramyl dipeptide adjuvant. J. Immune Based Ther. Vaccines. 2007; 5:11. DOI: 10.1186/1476-8518-5-11.
17. Beedham R. J., Turnbull P. C., Williamson E. D. Passive transfer of protection against Bacillus anthracisinfection in a murine model. Vaccine. 2001; 19 (31): 4409–4416. DOI: 10.1016/s0264-410x(01)00197-9.
18. Kobiler D., GozesY., Rosenberg H., Marcus D., Reuveny S., Altboum Z. Efficiency of protection of guinea pigs against infection with Bacillus anthracisspores by passive immunization. Infect. Immun. 2002; 70 (2): 544–560. DOI: 10.1128/IAI.70.2.544-550.2002.
19. Herrmann J. E., Wang S., Zhang C., Panchal R. G., Bavari S., Lyons C. R., et al. Passive immunotherapy of Bacillus anthracis pulmonary infection in mice with antisera produced by DNA immunization. Vaccine. 2006; 24 (31–32): 5872–5880. DOI: 10.1016/j.vaccine.2006.04.065.
20. Reuveny S., White M. D., Adar Y. Y., Kafri Y., Altboum Z., Gozes Y., et al. Search for correlates of protective immunity conferred by anthrax vaccine. Infect. Immun. 2001; 69 (5): 2888–2893. DOI: 10.1128/IAI.69.5.2888-2893.2001.
21. Caldwell M., Hathcock T., Brock K. V. Passive protection against anthrax in mice with plasma derived from horses hyper-immunized against Bacillus anthracis Sterne strain. PeerJ. 2017; 5:e3907. DOI: 10.7717/peerj.3907.
22. Plotkin S., Grabenstein J. D. Countering anthrax: vaccines and immunoglobulins. Clin. Infect. Dis. 2008; 46 (1): 129–136. DOI: 10.1086/523578.
23. Kummerfeldt C. E. Raxibacumab: potential role in the treatment of inhalational anthrax. Infect. Drug. Resist. 2014; 7: 101–109. DOI: 10.2147/IDR.S47305.
24. Chitlaru T., Altboum Z., Reuveny S., Shafferman A. Progress and novel strategies in vaccine development and treatment of anthrax. Immunol. Rev. 2011; 239 (1): 221–236. DOI: 10.1111/j.1600-065X.2010.00969.x.
25. Schneemann A., Manchester M. Anti-toxin antibodiesin prophylaxis and treatment of inhalation anthrax. Future Microbiol. 2009; 4 (1): 35–43. DOI: 10.2217/17460913.4.1.35.
26. Huang E., Pillai S. K., Bower W. A., Hendricks K. A., Guarnizo J. T., Hoyle J. D., et al. Antitoxin treatment of inhalation anthrax: a systematic review. Health Secur. 2015; 13 (6): 365–377. DOI: 10.1089/hs.2015.0032.
27. Firstova V. V., Shakhova A. S., Riabko A. K., Silkina M. V., Zeninskaya N. A., Romanenko Y. O., et al. Characterization of the adaptive immune response of donors receiving live anthrax vaccine. PLoS One. 2021; 16 (12):e0260202. DOI: 10.1371/journal.pone.0260202.
28. Brogna R., Oldenhof H., Sieme H., Figueiredo C., Kerrinnes T., WolkersW. F. Increasing storage stability of freeze-dried plasma using trehalose. PLoS One. 2020; 15 (6):e0234502. DOI: 10.1371/journal.pone.0234502.
Review
For citations:
Ivanova S.V., Melnikova L.A., Rodionov A.P., Evstifeev V.V. Method of obtaining and storing hyperimmune anthrax serum. Veterinary Science Today. 2023;12(3):215-221. https://doi.org/10.29326/2304-196X-2023-12-3-215-221