Preview

Veterinary Science Today

Advanced search

Current approaches to development of real-time qPCR test-kits

https://doi.org/10.29326/2304-196X-2023-12-3-197-207

Abstract

Currently fluorescent quantitative real-time polymerase chain reaction, which is a cutting-edge technology in genetic diagnosis, is used in different areas of molecularbiology. Practicaladvantageofsimplicityaswellascombination of high speed, sensitivityandspecificitymadeitpossibletousethisanalysisfor nucleic acidquantitation. Thepaperpresentsgeneral information andrecommendedrules for thedevelopmentof real-timeqPCR. Thepublication isaimedtoacquaint theresearchersandreviewerswith necessaryrequirementstobefollowedin order toensure high accuracy, reliabilityandtransparencyof theexperiments, correct interpretation andrepeatabilityof thetest results. Currentapproachesaredescribedthatallow obtainingreliableandconsistent resultsbydifferentoperators, at differenttimesandin differentlaboratories. Basicrequirementsforreagentsused, nucleotidesequencesandvalidationmethodsaregiven. In general, thepublication givestheinformation neededtoachievethreeultimategoals: toprovidetheauthorswith abroadrangeoftoolsandrequirementsforthedevelopmentof real-time qPCR based-techniques; togivethepossibilitytothereviewersandeditorsofassessingthequalityofarticlesandguidelines/instructions in accordance with the requiredcriteria; toobtain consistentandreliableresultsof testsperformedusingthis method. 

About the Authors

M. I. Doronin
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Maksim I. Doronin, Doctor of Science (Biology), Head of Sector, Laboratory for FMD Prevention

Vladimir



D. V. Mikhalishin
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Dmitry V. Mikhalishin, Doctor of Science (Veterinary Medicine), Head of Laboratory for FMD Prevention

Vladimir



A. V. Sprygin
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Alexander V. Sprygin, Doctor of Science (Biology), Senior
Researcher, Reference Laboratory for Bovine Diseases

Vladimir



A. Mazloum
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Ali Mazloum, Candidate of Science (Biology), Senior Researcher, Reference Laboratory for African Swine Fever

Vladimir



T. V. Zhbanova
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Tatyana V. Zhbanova, Candidate of Science (Biology), Junior Researcher, Education and Scientific Support Department, Academic Secretary of Thesis Council

Vladimir



K. N. Gruzdev
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Konstantin N. Gruzdev, Doctor of Science (Biology), Professor, Chief Researcher, Information and Analysis Centre

Vladimir



E. V. Chernyshova
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Elena V. Chernyshova, Candidate of Science (Veterinary
Medicine), Junior Researcher, Reference Laboratory for Rabies and BSE

Vladimir



References

1. Bernard P. S., Wittwer C. T. Real-time PCR technology for cancer diagnostics. Clin. Chem. 2002; 48 (8): 1178–1185. PMID: 12142370.

2. Burns M. J., Valdivia H., Harris N. Analysis and interpretation of data from real-time PCR trace detection methods using quantitation of GM soya as a model system. Anal. Bioanal. Chem. 2004; 378 (6): 1616–1623. DOI: 10.1007/s00216-003-2441-9.

3. Bustin S. A., Benes V., Nolan T., Pfaffl M. W. Quantitative real-time RTPCR – a perspective. J. Mol. Endocrinol. 2005; 34 (3): 597–601. DOI: 10.1677/jme.1.01755.

4. Bustin S. A., Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clin. Sci. (Lond.). 2005; 109 (4): 365–379. DOI: 10.1042/CS20050086.

5. Bustin S. A., Nolan T. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J. Biomol. Tech. 2004; 15 (3): 155–166. PMID: 15331581.

6. Damond F., Benard A., Ruelle J., Alabi A., Kupfer B., Gomes P., et al. Quality control assessment of human immunodeficiency virus type 2 (HIV-2) viral load quantification assays: results from an international collaboration on HIV-2 infection in 2006. J. Clin. Microbiol. 2008; 46 (6): 2088–2091. DOI: 10.1128/JCM.00126-08.

7. Bustin S. A., Mueller R. Real-time reverse transcription PCR and the detection of occult disease in colorectal cancer. Mol. Aspects Med. 2006; 27 (2–3): 192–223. DOI: 10.1016/j.mam.2005.12.002.

8. Ferns R. B., Garson J. A. Development and evaluation of a real-time RT-PCR assay for quantification of cell-free human immunodeficiency virus type 2 using a Brome Mosaic Virus internal control. J. Virol. Methods. 2006; 135 (1): 102–108. DOI: 10.1016/j.jviromet.2006.02.005.

9. Garson J. A., Grant P. R., Ayliffe U., Ferns R. B., Tedder R. S. Real-time PCR quantitation of hepatitis B virus DNA using automated sample preparation and murine cytomegalovirusinternal control. J. Virol. Methods. 2005; 126 (1–2): 207–213. DOI: 10.1016/j.jviromet.2005.03.001.

10. Garson J. A., Huggett J. F., Bustin S. A., Pfaffl M. W., Benes V., Vandesompele J., Shipley G. L. Unreliable real-time PCR analysis of human endogenous retrovirus-W (HERV-W) RNA expression and DNA copy number in multiple sclerosis. AIDS Res. Hum. Retroviruses. 2009; 25 (3): 377–378. DOI: 10.1089/aid.2008.0270.

11. HuangT., Li L. T., Bernstam E. V., Jiang X. Confidence-based laboratory test reduction recommendation algorithm. BMC Med. Inform. Decis. Mak. 2023; 23 (1):93. DOI: 10.1186/s12911-023-02187-3.

12. Shaw A., Reid S. M., Ebert K., Hutchings G., Ferris N., King D. Implementation of a one-step real-time RT-PCR protocol for diagnosis of footand-mouth disease. J. Virol. Methods. 2007; 143 (1): 81–85. DOI: 10.1016/j.jviromet.2007.02.009.

13. Schmidt M. W., Houseman A., Ivanov A. R., Wolf D. A. Comparative proteomic and transcriptomic profiling of the fission yeast Schizosaccharomyces pombe. Mol. Syst. Biol. 2007; 3:79. DOI: 10.1038/msb4100117.

14. Wittwer C. T., Herrmann M. G., Moss A. A., Rasmussen R. P. Continuous fluorescence monitoring of rapid cycle DNA amplification. BioTechniques. 1997; 22 (1): 130–138. DOI: 10.2144/97221bi01.

15. Wittwer С. T., Kusakawa N. Real-time PСR. In: MoleсularMiсrobiology: Diagnostiс Prinсiples and Praсtiсe. Ed. by D. H. Persing, F. С. Tenover, J. Versaloviс, J. W. Tang, E. R. Unger, D. A. Relman, T. J. White. Washington: ASM Press; 2004; 71–84.

16. Bjornsson H. T., Albert T. J., Ladd-Acosta C. M., Green R. D., Rongione M. A., Middle C. M., et al. SNP-specific array-based allele-specific expression analysis. Genome Res. 2008; 18 (5): 771–779. DOI: 10.1101/gr.073254.107.

17. Brazma A., Hingamp P., Quaсkenbush J., Sherloсk G., Spellman P., Stoeсkert С., et al. Minimum information about a miсroarray experiment (MIAME) – toward standards for miсroarray data. Nat. Genet. 2001; 29 (4): 365–371. DOI: 10.1038/ng1201-365.

18. Burns M., Valdivia H. Modelling the limit of deteсtion in real-time quantitative PСR. Eur. FoodRes. Teсhnol. 2008; 226: 1513–1524. DOI: 10.1007/s00217-007-0683-z.

19. Bustin S. A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000; 25 (2): 169–193. DOI: 10.1677/jme.0.0250169.

20. Doma M. K., Parker R. RNA quality control in eukaryotes. Cell. 2007; 131 (4): 660–668. DOI: 10.1016/j.cell.2007.10.041.

21. Fleige S., Pfaffl M. W. RNA integrity and the effect on the realtime qRT-PCR performance. Mol. Aspects Med. 2006; 27 (2–3): 126–139. DOI: 10.1016/j.mam.2005.12.003.

22. Burns M. J., Nixon G. J., Foy C. A., Harris N. Standardisation of data from real-time quantitative PCR methods – evaluation of outliers and comparison of calibration curves. BMCBiotechnol. 2005; 5:31. DOI: 10.1186/1472-6750-5-31.

23. Bustin S. A. Real-time, fluorescence-based quantitative PCR: a snapshot of current procedures and preferences. Expert Rev. Mol. Diagn. 2005; 5 (4): 493–498. DOI: 10.1586/14737159.5.4.493.

24. Gingeras T. R. RNA reference materials for gene expression studies. Difficult first steps. Clin. Chem. 2004; 50 (8): 1289–1290. DOI: 10.1373/clinchem.2003.030072.

25. Hellemans J., Mortier G., De Paepe A., Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007; 8 (2):R19. DOI: 10.1186/gb-2007-8-2-r19.

26. Karlen Y., MсNair A., Perseguers S., Mazza С., Mermod N. Statistiсal signifiсanсe of quantitative PСR. BMС Bioinformatiсs. 2007; 8:131. DOI: 10.1186/1471-2105-8-131.

27. Lefever S., Hellemans J., Pattyn F., Przybylski D. R., Taylor C., Geurts R., et al. RDML: structured language and reporting guidelines for real-time quantitative PCR data. Nucleic Acids Res. 2009; 37 (7): 2065–2069. DOI: 10.1093/nar/gkp056.

28. Ellison S. L., English C. A., Burns M. J., Keer J. T. Routes to improving the reliability of low levelDNA analysis using real-time PCR. BMC Biotechnol. 2006; 6:33. DOI: 10.1186/1472-6750-6-33.

29. Huggett J., Dheda K., Bustin S., Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005; 6 (4): 279–284. DOI: 10.1038/sj.gene.6364190.

30. Micke P., Ohshima M., Tahmasebpoor S., Ren Z. P., OstmanA., Pontén F., Botling J. Biobanking of fresh frozen tissue: RNAisstable in nonfixed surgical specimens. Lab. Invest. 2006; 86 (2): 202–211. DOI: 10.1038/labinvest.3700372.

31. Kubista M., Andrade J. M., Bengtsson M., Forootan A., Jonák J., Lind K., et al. The real-time polymerase chain reaction. Mol. Aspects Med. 2006; 27 (2–3): 95–125. DOI: 10.1016/j.mam.2005.12.007.

32. Böhlenius H., Eriksson S., Parсy F., Nilsson O. Retraсtion. Sсienсe. 2007; 316:367. DOI: 10.1126/science.316.5823.367b.

33. Echeverri C. J., Beachy P. A., Baum B., Boutros M., Buchholz F., Chanda S. K., et al. Minimizingtheriskofreportingfalsepositivesinlarge-scaleRNAi screens. Nat. Methods. 2006; 3 (10): 777–779. DOI: 10.1038/nmeth1006-777.

34. Landi D., Gemignani F., Naccarati A., Pardini B., Vodicka P., Vodickova L., et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008; 29 (3): 579–584. DOI: 10.1093/carcin/bgm304.

35. Mackay I. M., Arden K. E., Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 2002; 30 (6): 1292–1305. DOI: 10.1093/nar/30.6.1292.

36. Mackay I. M. Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect. 2004; 10 (3): 190–212. DOI: 10.1111/j.1198-743x.2004.00722.x.

37. Morrogh M., Olvera N., Bogomolniy F., Borgen P. I., King T. A. Tissue preparation for laser capture microdissection and RNA extraction from fresh frozen breast tissue. BioTechniques. 2007; 43 (1): 41–42, 44, 46. DOI: 10.2144/000112497.

38. Nolan T., Hands R. E., Ogunkolade W., Bustin S. A. SPUD: a quantitative PCR assay for the detection of inhibitors in nucleic acid preparations. Anal. Biochem. 2006; 351 (2): 308–310. DOI: 10.1016/j.ab.2006.01.051.

39. Taylor C. F., Field D., Sansone S. A., Aerts J., Apweiler R., Ashburner M., et al. Promoting coherent minimum reporting guidelinesfor biological and biomedical investigations: the MIBBI project. Nat. Biotechnol. 2008; 26 (8): 889–896. DOI: 10.1038/nbt.1411.

40. Joseph L. J. RNA reference materials for gene expression studies. RNA metrology: forecast calls for partial clearing. Clin. Chem. 2004; 50 (8): 1290–1292. DOI: 10.1373/clinchem.2004.032441.

41. Cronin M., Ghosh K., Sistare F., Quackenbush J., VilkerV., O’Connell C. Universal RNA reference materials for gene expression. Clin. Chem. 2004; 50 (8): 1464–1471. DOI: 10.1373/clinchem.2004.035675.

42. MSI Board Members; Sansone S. A., Fan T., Goodacre R., Griffin J. L., Hardy N. W., et al. The metabolomics standards initiative. Nat. Biotechnol. 2007; 25 (8): 846–848. DOI: 10.1038/nbt0807-846b.

43. Gygi S. P., Rochon Y., Franza B. R., Aebersold R. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 1999; 19 (3): 1720– 1730. DOI: 10.1128/MCB.19.3.1720.

44. Reiter M., Pfaffl M. W. Effects of plate position, plate type and sealing systems on real-time PCR results. Biotechnology & Biotechnological Equipment. 2008; 22 (3): 824–828. DOI: 10.1080/13102818.2008.10817561.

45. Ben-Dov C., Hartmann B., Lundgren J., Valcárcel J. Genome-wide analysis of alternative pre-mRNA splicing. J. Biol. Chem. 2008; 283 (3): 1229– 1233. DOI: 10.1074/jbc.R700033200.

46. Higuchi R., Dollinger G., Walsh P. S., Griffith R. Simultaneous amplification and detection of specific DNA sequences. Nat. Biotechnol. 1992; 10 (4): 413–417. DOI: 10.1038/nbt0492-413.

47. Huggett J. F., Novak T., Garson J. A., Green C., Morris-Jones S. D., Miller R. F., Zumla A. Differential susceptibility of PCR reactions to inhibitors: an important and unrecognised phenomenon. BMC Res. Notes. 2008; 1:70. DOI: 10.1186/1756-0500-1-70.

48. Schmittgen T. D., Livak K. J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008; 3 (6): 1101–1108. DOI: 10.1038/nprot.2008.73.

49. Ståhlberg A., Håkansson J., Xian X., SembH., Kubista M. Properties of the reverse transcription reaction in mRNA quantification. Clin. Chem. 2004; 50 (3): 509–515. DOI: 10.1373/clinchem.2003.026161.

50. Taylor C. F., Paton N. W., Lilley K. S., Binz P. A., Julian R. K. Jr., Jones A. R., et al. The minimum information about a proteomics experiment (MIAPE). Nat. Biotechnol. 2007; 25 (8): 887–893. DOI: 10.1038/nbt1329.

51. Vogelstein B., Kinzler K. W. Digital PCR. Proc.Natl. Acad. Sci. USA. 1999; 96 (16): 9236–9241. DOI: 10.1073/pnas.96.16.9236.

52. Dube S., Qin J., Ramakrishnan R. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS One. 2008; 3 (8):e2876. DOI: 10.1371/journal.pone.0002876.

53. FieldD., Garrity G., Gray T., Morrison N., SelengutJ., Sterk P., et al. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 2008; 26 (5): 541–547. DOI: 10.1038/nbt1360.

54. Higuchi R., Fockler C., Dollinger G., Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Nat. Biotechnol. 1993; 11 (9): 1026–1030. DOI: 10.1038/nbt0993-1026.

55. Nolan T., Hands R. E., Bustin S. A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006; 1 (3): 1559–1582. DOI: 10.1038/nprot.2006.236.

56. Pattyn F., Speleman F., De Paepe A., Vandesompele J. RTPrimerDB: the real-time PCR primer and probe database. NucleicAcids Res. 2003; 31 (1): 122–123. DOI: 10.1093/nar/gkg011.

57. Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29 (9):e45. DOI: 10.1093/nar/29.9.e45.

58. Ramsden S. C., Daly S., Geilenkeuser W. J., Duncan G., Hermitte F., Marubini E., et al. EQUAL-quant: an international external quality assessment scheme for real-time PCR. Clin. Chem. 2006; 52 (8): 1584–1591. DOI: 10.1373/clinchem.2005.066019.

59. Breslauer K. J., Frank R., Blöcker H., Marky L. A. Predicting DNA duplex stability from the base sequence. Proc. Natl. Acad. Sci. USA. 1986; 83 (11): 3746–3750. DOI: 10.1073/pnas.83.11.3746.

60. Sugimoto N., Nakano S., Katoh M., Matsumura A., Nakamuta H., Ohmichi T., et al. Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry. 1995; 34 (35): 11211–11216. DOI: 10.1021/bi00035a029.

61. Xia T., SantaLucia J. Jr., Burkard M. E., Kierzek R., Schroeder S. J., Jiao X., et al. Thermodynamic parameters for an expanded nearest-neighbor model for formation of RNA duplexes with Watson-Crick base pairs. Biochemistry. 1998; 37 (42): 14719–14735. DOI: 10.1021/bi9809425.

62. Elnifro E. M., Ashshi A. M., Cooper R. J., Klapper P. E. Multiplex PCR: optimization and application in diagnostic virology. Clin. Microbiol. Rev. 2000; 13 (4): 559–570. DOI: 10.1128/CMR.13.4.559.

63. Wittwer C. T., Herrmann M. G., Gundry C. N., Elenitoba-Johnson K. S. Real-time multiplex PCR assays. Methods. 2001; 25 (4): 430–442. DOI: 10.1006/meth.2001.1265.

64. Russia State Pharmacopoeia. Part 1. 12th ed. Moscow: Scientific Centre for Expert Evaluation of Medicinal Products; 2008. 696 p. (in Russ.)

65. Lakin G. F. Biometrics. 4th ed., revised and supplemented. Moscow: Vysshaya shkola; 1990. 351 p. (in Russ.)

66. Носырев П., Носырева М., Рассказова Т., Корнеева Н. Валидация аналитических методик: теория и практика (часть I). Ремедиум. 2003; 10; 69–71. EDN: PLLZDJ.

67. Swango K. L., Hudlow W. R., Timken M. D., Buoncristiani M. R. Developmental validation of a multiplex qPCR assay for assessing the quantity and quality of nuclear DNA in forensic samples. Forensic Sci. Int. 2007; 170 (1): 35–45. DOI: 10.1016/j.forsciint.2006.09.002.

68. Principles and methods of validation of diagnostic assays for infectious diseases. In: WOAH. Manual of Diagnostic Tests and Vaccinesfor TerrestrialAnimals. Paris; 2018; Chapter 1.1.6. Режим доступа: https://www.woah. org/fileadmin/Home/eng/Health_standards/tahm/1.01.06_VALIDATION. pdf (дата обращения: 20.01.2013).

69. OIE. Quality Standard and Guidelines for Veterinary Laboratories: Infeсtious Diseases. 2nd ed. Paris; 2008. 70 p.

70. GOST R ISO 5725-1-2002 Accuracy (trueness and precision) of measurement methods and results. Part 1–6. Available at: https://docs.cntd.ru/document/1200029975. (in Russ.)

71. Haney S. A. Increasing the robustness and validity of RNAi screens. Pharmacogenomics. 2007; 8 (8): 1037–1049. DOI: 10.2217/14622416.8.8.1037.

72. VandesompeleJ., DePreterK., PattynF., PoppeB., VanRoyN., DePaepeA., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3 (7): research0034.1–0034.11. DOI: 10.1186/gb-2002-3-7-research0034.

73. Andersen C. L., Jensen J. L., Ørntoft T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004; 64 (15): 5245–5250. DOI: 10.1158/0008-5472.CAN-04-0496.


Review

For citations:


Doronin M.I., Mikhalishin D.V., Sprygin A.V., Mazloum A., Zhbanova T.V., Gruzdev K.N., Chernyshova E.V. Current approaches to development of real-time qPCR test-kits. Veterinary Science Today. 2023;12(3):197-207. https://doi.org/10.29326/2304-196X-2023-12-3-197-207

Views: 299


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)