Preview

Veterinary Science Today

Advanced search

Properties of Actinobacillus pleuropneumoniae isolates

https://doi.org/10.29326/2304-196X-2023-12-2-178-184

Abstract

Results of tests of six Actinobacillus pleuropneumoniae isolates recovered from the diseased pigs kept in animal holdings located in the Russian Federation for their biological properties (biochemical, proteomic, antigenic and pathogenic ones) are presented in the paper. Proteomic properties were determined with mass-spectrometry using Autof MS 1000 mass-spectrometer (Autobio Diagnostics Co., Ltd, China): protein profiles were plotted and the peaks characteristic for each isolate were identified. Mass-spectra of tested Actinobacillus isolates and reference Actinobacillus pleuropneumoniae DSM 13472 strain were found to be in the m/z range of 2,000–12,000 Da. The following peaks (m/z) were common for all Actinobacillus pleuropneumoniae isolates and the strain: 2,541 ± 2; 4,267 ± 2; 5,085 ± 2; 6,450 ± 2; 7,207 ± 4; 9,408 ± 3; 11,820 ± 6. Therewith, the highest intensity (100%) was reported for the peak at 5,085 ± 2, that was supposed to be a specific feature of Actinobacillus pleuropneumoniae. All isolates were confirmed to belong to Actinobacillus pleuropneumoniae species and to 2, 5 and 9 serotypes by real-time polymerase chain reaction using species-specific and serotype-specific primers. Actinobacillus рleuropneumoniae isolates were tested for their pathogenic properties by experimental infection of white mice and 2.5–3 month-old piglets. All tested isolates were pathogenic for both white mice and piglets. Isolate No. 4 belonging to serotype 5 was found to be the most virulent out of tested isolates. Thus, LD50 was 4.19 lg microbial cells for white mice and 5.49 lg microbial cells for piglets that was consistent to the data of other authors carried out tests of actinobaccilli isolated in the Russian Federation for their pathogenicity. The isolates were deposited to the FGBI “ARRIAH” Collection of Microorganism Strains.

About the Authors

V. А. Evgrafova
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Valeria A. Evgrafova, Candidate of Science (Veterinary Medicine), Head of Laboratory for Bacterial Disease Prevention

Vladimir



О. V. Pruntova
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Olga V. Pruntova, Doctor of Science (Biology), Professor, Chief Researcher, Information and Analysis Centre

 600901 Vladimir, Yur’evets



N. B. Shadrova
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Natalya B. Shadrova, Candidate of Science (Biology), Head of Department for Microbiological Testing

Vladimir



А. М. Timina
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Anna M. Timina, Candidate of Science (Veterinary Medicine), Senior Researcher, Reference Laboratory for Highly Dangerous Diseases

Vladimir



References

1. Skorodumov D. I. Porcine Actinobacillus (Haemophilus) pleuropneumonia and hemophilic polyserositis (etiology, laboratory diagnosis, basic specific prevention of Actinobacillus pleuropneumonia): Author’s Abstract of Thesis for degree of Doctor of Science (Veterinary Medicine). Moscow; 1997. 38 p. (in Russ.)

2. Desrosiers R., Moore C. Indirect transmission of Actinobacillus pleuropneumoniae. Swine Health and Production. 1998; 6 (6): 263–265.

3. Jacobsen M. J., Nielsen J. P., Nielsen R. Comparison of virulence of different Actinobacillus pleuropneumoniae serotypes and biotypes using an aerosol infection model. Vet. Microbiol. 1996; 49 (3–4): 159–168. DOI: 10.1016/0378-1135(95)00184-0.

4. Jobert J. L., Savoye C., Cariolet R., Kobisch M., Madec F. Experimental aerosol transmission of Actinobacillus pleuropneumoniae to pigs. Can. J. Vet. Res. 2000; 64 (1): 21–26. PMID: 10680652.

5. Gottschalk M. Actinobacillus pleuropneumoniae serotypes, pathogenicity and virulence. Proc. AASV. 2007; 381–384.

6. Rusaleyev V.  S., Biryuchenkov D.  А., Frolovtseva  А.  А. Aktinobatsilleznaya plevropnevmoniya svinei: profilaktika i mery bor’by = Porcine (Actinobacillus) pleuropneumonia: prevention and control measures. Pigbreeding. 2007; 4: 28–29. EDN: IBOJBB. (in Russ.)

7. Skorodumov D. I. Aktinobatsilleznaya pnevmoniya svinei = Porcine (Actinobacillus) pleuropneumonia. Veterinariya sel’skokhozyaistvennykh zhivotnykh. 2008; 12: 10–13. (in Russ.)

8. Timina A. M., Biryuchenkova M. V., Scherbakov A. V. Genetic diagnosis of porcine (Actinobacillus)pleuropneumonia. Proceedings ofthe FederalCentre for Animal Health. 2010; 8: 114–121. EDN: NDHHLN. (in Russ.)

9. Haesebrouck F., Chiers K., Van Overbeke I., Ducatelle R. Actinobacillus pleuropneumoniae infections in pigs: the role of virulence factors in pathogenesis and protection. Vet. Microbiol. 1997; 58 (2–4): 239–249. DOI: 10.1016/s0378-1135(97)00162-4.

10. Frolovtseva А. А. Preparation of Actinobacillus pleuropneumoniae antigens for inactivated vaccines: Author’s Abstract of Thesis for degree of Candidate of Science (Veterinary Medicine). Vladimir; 2008. 25 p. (in Russ.)

11. Cruijsen T., van Leengoed L. A., Ham-Hoffies M., Verheijden J. H. Convalescent pigs are protected completely against infection with a homologous Actinobacillus pleuropneumoniae strain butincompletely against a heterologous-serotype strain. Infect. Immun. 1995; 63 (6): 2341–2343. DOI: 10.1128/iai.63.6.2341-2343.1995.

12. Loera-Muro A., Angulo C. New trends in innovative vaccine development against Actinobacillus pleuropneumoniae. Vet. Microbiol. 2018; 217: 66–75. DOI: 10.1016/j.vetmic.2018.02.028.

13. Ramjeet M., Deslandes V., Gouré J., Jacques M. Actinobacillus pleuropneumoniae vaccines: from bacterins to new insights into vaccination strategies. Anim. Health Res. Rev. 2008; 9 (1): 25–45. DOI: 10.1017/S1466252307001338.

14. Potekhin A. V., Lebedev N. V., Rusaleyev V. S. Antigenicity and immunogenicity of Actinobacillus pleuropnemoniae toxoid. Veterinaria i kormlenie. 2013; 5: 42–43. EDN: RCBGQR. (in Russ.)

15. Stancheva S. G., Frömbling J., Sassu E. L., Hennig-Pauka I., Ladinig A., Gerner W., et al. Proteomic and immunoproteomic insights into the exoproteome of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. Microb. Pathog. 2022; 172:105759. DOI: 10.1016/j.micpath.2022.105759.

16. Antenucci F., Magnowska Z., Nimtz M., Roesch C., Jänsch L., Bojesen A. M. Immunoproteomic characterization of outer membrane vesicles from hyper-vesiculating Actinobacillus pleuropneumoniae. Vet. Microbiol. 2019; 235: 188–194. DOI: 10.1016/j.vetmic.2019.07.001.

17. Kuhnert P., Bisgaard M., Korczak B.  M. Schwendener S., Christensen H., Frey J. Identification of animal Pasteurellaceae by MALDI-TOF mass spectrometry. J. Microbiol. Methods. 2012; 89 (1): 1–7. DOI: 10.1016/j.mimet.2012.02.001.

18. HoltJ. G., Krieg N. R., Sneath P. H. A., Staley J. T., Williams S. T. Bergey’s Manual ofDeterminative Bacteriology. 9th ed. Baltimore: Williams & Wilkins; 1994. 787 p.

19. Xiao G., Cao S., Huang X., Wen X. DNA microarray-based identification and typing of Actinobacillus pleuropneumoniae. Can. J. Vet. Res. 2009; 73 (3): 190–199. PMID: 19794891.

20. AngenO., Ahrens P., Jessing S. G. Development of a multiplex PCR test for identification of Actinobacillus pleuropneumoniae serovars 1, 7, and 12. Vet. Microbiol. 2008; 132 (3–4): 312–318. DOI: 10.1016/j.vetmic.2008.05.010.

21. Zhou L., Jones S. C., Angen Ø., Bossé J. T., Nash J. H., Frey J., et al. Multiplex PCR that can distinguish between immunologically cross-reactive serovar 3, 6, and 8 Actinobacillus pleuropneumoniae strains. J. Clin. Microbiol. 2008; 46 (2): 800–803. DOI: 10.1128/JCM.01787-07.


Review

For citations:


Evgrafova V.А., Pruntova О.V., Shadrova N.B., Timina А.М. Properties of Actinobacillus pleuropneumoniae isolates. Veterinary Science Today. 2023;12(2):178-184. https://doi.org/10.29326/2304-196X-2023-12-2-178-184

Views: 372


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)