Preview

Veterinary Science Today

Advanced search

Optimizing a low-temperature preservation technique for Bacillus anthracis strains

https://doi.org/10.29326/2304-196X-2023-12-2-171-177

Abstract

The use of pure microbial cultures is associated with the following key challenges: storage, transportation and resuscitation after a long-term preservation. The currently used anthrax vaccines are produced using various strains of Bacillus anthracis. According to the storage passport data, anthrax strains are now stored in 30–40% glycerin solutions, which helps to preserve a sufficient number of viable cells without losses to their pathogenic properties for three years. It is obviously an urgent task to develop a long-term preservation technique for Bacillus anthracis strains. The aim of this study was to optimize a low-temperature preservation method for Bacillus anthracis strains that ensures viability and no losses to biological properties of the pathogen. Two vaccine strains of Bacillus anthracis were selected for the research: i.e. K-STI-79 and 55-VNIIVViM and two cryoprotective media (No. 1 – 15% glycerin solution with 15% glucose solution and No. 2 – 30% neutral glycerin solution in saline solution). At first biological properties of the strains were studied and the number of viable cells was calculated. Later on, the strains were placed into low-temperature preservation facilities, at the temperature of –40 and –70 °C. Six months later, the effect of three thawing cycles on viability and biological properties of the agent was tested: i.e. at room temperature (22 ± 2) °C, in a water bath at a temperature of (37 ± 1) °C and in a household refrigerator at a temperature of (6 ± 2) °C. As demonstrated, the best option is to preserve the cells at –70 °C and thaw them in a water bath at (37 ± 1) °C. Further research will be focused on duration of the low-temperature preservation that will ensure appropriate viability and biological properties of the pathogen.

About the Authors

A. P. Rodionov
FSBSI “Federal Center for Toxicological, Radiation and Biological Safety” (FSBSI “FCTRBS-ARRVI”)
Russian Federation

Alexander P. Rodionov, Candidate of Science (Veterinary Medicine), Junior Researcher, Laboratory for Collection of Strains of Microorganisms

420075, Republic of Tatarstan, Kazan, Nauchnyi gorodok-2



E. A. Artemeva
FSBSI “Federal Center for Toxicological, Radiation and Biological Safety” (FSBSI “FCTRBS-ARRVI”)
Russian Federation

Elena A. Artemeva, Candidate of Science (Veterinary Medicine), Head of Laboratory for Collection of Strains of Microorganisms

Kazan, Republic of Tatarstan



L. A. Melnikova
FSBSI “Federal Center for Toxicological, Radiation and Biological Safety” (FSBSI “FCTRBS-ARRVI”)
Russian Federation

Lilia A. Melnikova, Candidate of Science (Veterinary Medicine), Associate Professor, Leading Researcher, Laboratory for Collection of Strains of Microorganisms

Kazan, Republic of Tatarstan



D. M. Sahibullina
FSBSI “Federal Center for Toxicological, Radiation and Biological Safety” (FSBSI “FCTRBS-ARRVI”)
Russian Federation

Daniya M. Sahibullina, Senior Laboratory Technician, Laboratory for Collection of Strains of Microorganisms

Kazan, Republic of Tatarstan



References

1. Heylen K., Hoefman S., Vekeman B., Peiren J., De Vos P. Safeguarding bacterial resources promotes biotechnological innovation. Appl. Microbiol. Biotechnol. 2012; 94: 565–574. DOI: 10.1007/s00253-011-3797-y.

2. Nikitina Z. K., Gordonova I. K., Nasibov E. M. Collagenolytic properties of micromycetes collection strains during long-term storage study. Problems of biological, medical and pharmaceutical chemistry. 2021; 24 (3): 33−39. DOI: 10.29296/25877313-2021-03-05. (in Russ.)

3. Artemeva E. A., Melnikova L. A., Rodionov A. P. Long-term storage of C-141 reference strain of melioidosis agent (Burkholderia pseudomallei). Veterinary Science Today. 2022; 11 (3): 268–272. DOI: 10.29326/2304-196X-2022-11-3-268-272.

4. Artemeva E. A., Melnikova L. A., Rodionov A.  P. Preparation and transfer of Burkholderia mallei production strain 5584 in accordance with the biosafety requirements. Veterinary Science Today. 2021; 10 (3): 243–247. DOI: 10.29326/2304-196X-2021-3-38-243-247.

5. Gracheva I. V., Osin A. L. Low-temperature conservation of collection cholera vibrio strains. Problems of ParticularlyDangerousInfections. 2014; (4): 39–42. DOI: 10.21055/0370-1069-2014-4-39-42. (in Russ.)

6. Pokhilenko V. D., Baranov А. М., Detushev К. V. Metody dlitel’nogo khraneniya kollektsionnykh kul’tur mikroorganizmov i tendentsii razvitiya = Methods of long-term storage for collection microbial cultures and their optimization. University proceedings. Volga region. Medical sciences. 2009; 4 (12): 99–121. EDN: LAKPFX. (in Russ.)

7. Fissore D., McCoy T. Editorial: freeze-drying and process analytical technology for pharmaceuticals. Front. Chem. 2018; 6:622. DOI: 10.3389/fchem.2018.00622.

8. Gracheva I. V., Valova T. V., Grigor’eva G. V. Traditional and modern protective media for the low-temperature bacteria preservation. Problems of Particularly Dangerous Infections. 2011; (4): 36–40. DOI: 10.21055/0370-1069-2011-4(110)-36-40. (in Russ.)

9. Molchanova E. V., Ageeva N. P. Scientific and methodologicalsupport for development of pathogenic microorganism collection of Volgograd research institute for plague control. Journal of Microbiology, Epidemiology and Immunobiology. 2018; 95 (3): 117–126. DOI: 10.36233/0372-9311-2018-3-117-126. (in Russ.)

10. Cui S., Hu K., Qian Z., Mao B., Zhang Q., Zhao J., et al. Improvement of freeze-dried survival of Lactiplantibacillus plantarum based on cell membrane regulation. Microorganisms. 2022; 10 (10):1985. DOI: 10.3390/microorganisms10101985.

11. Malakhaeva A. N., Lyashova O. Yu., Plotnikov O. P., Osin A. V. Maintenance of Francisella tularensis 15 RIEH and Brucella abortus 19 BA strainsin a viable state by means of deep freezing. Problems of ParticularlyDangerousInfections. 2015; (1): 63–66. DOI: 10.21055/0370-1069-2015-1-63-66. (in Russ.)

12. Savkina O. A., Ternovskoi G. V., Lokachuk M. N., Pavlovskaya E. N., Safronova V. I. Cryopreservation to be a progressive method for keeping up valuable strains of lactic acid bacteria and yeasts. Agricultural Biology. 2014; 49 (4): 112–119. DOI: 10.15389/agrobiology.2014.4.112rus. (in Russ.)

13. Ermolova V. P., Grishechkina S. D., Nizhnikov A. A. Activity of insecticidal Bacillus thuringiensis var. Israelensis strains stored by various methods. Agricultural Biology. 2018; 53 (1): 201–208. DOI: 10.15389/agrobiology.2018.1.201eng.

14. Liu M., Chen C., Yu J., Zhang H., Liang L., Guo B., et al. The gelatinbased liquid marbles for cell cryopreservation. Mater. Today Bio. 2022; 17:100477. DOI: 10.1016/j.mtbio.2022.100477.

15. Ali P., Fucich D., Shah A. A., Hasan F., Chen F. Cryopreservation of cyanobacteria and eukaryotic microalgae using exopolysaccharide extracted from a glacier bacterium. Microorganisms. 2021; 9 (2):395. DOI: 10.3390/microorganisms9020395.

16. Sidorchuk A. A. History of vaccines and vaccination. Part II. Рox and anthrax. Russian Veterinary Journal. 2018; (6): 12–14. DOI: 10.32416/article_ 5c050ab91c6a36.36611669. (in Russ.)

17. Sidorchuk A. A. History of vaccines and vaccination. Part III. Rabies and tuberculosis. Russian Veterinary Journal. 2019; (2): 25–28. DOI: 10.32416/article_5cd16d076a75a6.23029629. (in Russ.)

18. Sidorchuk A. A. History of vaccines and vaccination. Part IV. Rinderpest and contagious pleuropneumonia of cattle. Russian Veterinary Journal. 2019; (6): 35–38. DOI: 10.32416/2500-4379-2019-2019-6-35-38. (in Russ.)

19. Sidorchuk A.  A. History of vaccines and vaccination. Part V. Foot-and-mouth disease. Russian Veterinary Journal. 2020; (2): 27–30. DOI: 10.32416/2500-4379-2020-2-27-30. (in Russ.)

20. Rodionov A. P., Artemeva E. A., Melnikova L. A., Kosarev M. A., Ivanova S. V. Features of anthrax natural foci and Bacillus anthracis ecology. Veterinary Science Today. 2021; (2): 151–158. DOI: 10.29326/2304-196X-2021-2-37-151-158.

21. Lyagoskin I. V., Vasina N. K., Yegorova I. Yu., Selyaninov Yu. O. Constructing anthrax erythrocyte antigenic diagnosticums. Vestnik ofthe Russian agriculturalscience. 2012; (6): 73–76. EDN: PMBHXL. (in Russ.)

22. Egorova I. Yu., Sevskii T. A., Selyaninov Yu. O. Immunobiological properties of new unencapsulated Bacillus anthracis 363/11 strain. Appl. Biochem. Microbiol. 2016; 52 (8): 733–738. DOI: 10.1134/S0003683816080044.

23. Zhilchenko E. B., Zharinova N. V., Serdyuk N. S., Konyaeva O. A., Gavrilova O. N. Ensuring biological safety during lyophilization for microorganisms of I–II pathogenicity groups. PublicHealth and Life Environment – PH&LE. 2019; (1): 46–50. DOI: 10.35627/2219-5238/2019-310-1-46-50. (in Russ.)

24. Bavrina А. P. Modern rulesfor the use of parametric and nonparametric toolsin the statistical analysis of biomedical data. Medical Almanac. 2021; 1 (66): 64–73. EDN: IZXMBZ. (in Russ.)

25. HubálekZ. Protectantsusedinthecryopreservationofmicroorganisms. Cryobiology. 2003; 46 (3): 205–229. DOI: 10.1016/s0011-2240(03)00046-4.

26. Hasan M., Fayter A. E. R, Gibson M. I. Ice recrystallization inhibiting polymers enable glycerol-free cryopreservation of microorganisms. Biomacromolecules. 2018; 19 (8): 3371–3376. DOI: 10.1021/acs.biomac.8b00660.


Review

For citations:


Rodionov A.P., Artemeva E.A., Melnikova L.A., Sahibullina D.M. Optimizing a low-temperature preservation technique for Bacillus anthracis strains. Veterinary Science Today. 2023;12(2):171-177. https://doi.org/10.29326/2304-196X-2023-12-2-171-177

Views: 285


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)