Preview

Veterinary Science Today

Advanced search

Spatiotemporal analysis of African swine fever spread in wild boar population in Russian Federation, 2007–2022

https://doi.org/10.29326/2304-196X-2023-12-1-57-65

Abstract

African swine fever is a transboundary disease of all members of Suidae family andit causes economic damage to the pigindustry and ecology of wild boar as a species. The ASF epidemiology is complex andit is specifiedby the mechanismsof the agent’s transmission in susceptible animal populations. Choiceof measure saimed to control and prevent the disease spreadin the wild boar population depends mainly on the routes of the disease introduction and stage or phase of the epizootic process. Prevention of the ASFV introduction from an infected region to a free one is the back bone in the infection prevention. Therefore, there search was aimed at the spatiotemporal analysis of African swine feveroutbreaks in the wild boar population in the Russian Federation in 2007–2022 and identification of geographical are as that poser is kof new disease epidemics. The analysis was performed using retrospective space-timescan statistics, which does not require data on the wild boar population and which can beused for the assessment of the possibility of new ASFoutbreak occurrence upon availability of just data on the reported disease case sand out breaks. As are sult of spatiotem poral cluster analysis, 24 clusters of ASF out breaks were identified based on the laboratory-confirmed data on the infection in boars found dead, and 22 clusters in hunted wildboars. The analysis results demonstrated spatial heterogeneity of the outbreak cluster distribution in population of wildboarsdied of the disease and a significant expansion of the passive surveillance geography. Importance and necessity of the enhanced passive surve illance of African swinefever in susceptible animals is demonstrated. The proposed methodcan beused for regular scanning of age ographic region for the presence of developing zone sand areasat risk of re-emerging ASFoutbreaks in the wildboar population at different spatial scales. 

About the Authors

O. I. Zakharova
Federal Research Center for Virology and Microbiology (FRCVM); Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology (NNRVI – Branch of the FRCVM)
Russian Federation

Olga I. Zakharova, Researcher, Department of Epizootology and Risk Assessment Associated with Animal Health

Nizhny Novgorod



A. A. Blokhin
Federal Research Center for Virology and Microbiology (FRCVM); Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology (NNRVI – Branch of the FRCVM)
Russian Federation

Andrey A. Blokhin, Candidate of Science (Veterinary Medicine), Leading Researcher, Head of Department of Epizootology and Risk Assessment Associated with Animal Health

Nizhny Novgorod



O. A. Burova
Federal Research Center for Virology and Microbiology (FRCVM); Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology (NNRVI – Branch of the FRCVM)
Russian Federation

Olga A. Burova, Deputy Head of Department of Epizootology and Risk Assessment Associated with Animal Health

Nizhny Novgorod



I. V. Yashin
Federal Research Center for Virology and Microbiology (FRCVM); Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology (NNRVI – Branch of the FRCVM)
Russian Federation

Ivan V.  Yashin, Candidate of  Science (Biology), Leading Researcher, Department of Epizootology and Risk Assessment Associated with Animal Health

Nizhny Novgorod



F. I. Korennoy
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Fedor I. Korennoy, Candidate of Science (Geography), Senior Researcher, Information and Analysis Centre

Vladimir



References

1. De la Torre A., Bosch J., Sánchez-Vizcaíno J. M., Ito S., Muñoz C., IglesiasI., Martínez-Avilés M. African swine feversurvey in a European context. Pathogens. 2022; 11 (2):137. DOI: 10.3390/pathogens11020137.

2. EFSA, Baños J. V., Boklund A., Gogin A., Gortázar Ch., Guberti V., et al. Epidemiological analyses of African swine feverin the EuropeanUnion (September 2020 to August 2021). EFSA J. 2022; 20 (5):е07290. DOI: 10.2903/j. efsa.2022.7290.

3. Sauter-Louis C., Conraths F. J., Probst C., Blohm U., Schulz K., Sehl J., et al. African swine fever in wild boar in Europe – a review. Viruses. 2021; 13 (9):1717. DOI: 10.3390/v13091717.

4. Dixon L. K., Stahl K., Jori F., Vial L., Pfeiffer D. U. African swine fever epidemiology and control. Annu. Rev. Anim. Biosci. 2020; 8: 221–246. DOI: 10.1146/annurev-animal-021419-083741.

5. Pepin K. M., Golnar A. J., Abdo Z., Podgórski T. Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control. Ecol. Evol. 2020; 10 (6): 2846–2859. DOI: 10.1002/ece3.6100.

6. Arzumanyan H., Hakobyan S., Avagyan H., Izmailyan R., Nersisyan N., Karalyan Z. Possibility of long-term survival of African swine fever virus in natural conditions. Vet. World. 2021; 14 (4): 854–859. DOI: 10.14202/vetworld.2021.854-859.

7. Bergmann H., Schulz K., Conraths F. J., Sauter-Louis C. A review of environmental risk factors for African swine fever in European wild boar. Animals (Basel). 2021; 11 (9):2692. DOI: 10.3390/ani11092692.

8. Guinat C., Vergne T., Jurado-Diaz C., Sánchez-Vizcaíno J. M., Dixon L., Pfeiffer D. U. Effectiveness and practicality of control strategies for African swine fever: what do we really know? Vet. Rec. 2017; 180 (4):97. DOI: 10.1136/vr.103992.

9. Jori F., Bastos A. D. Role of wild suids in the epidemiology of African swine fever. Ecohealth. 2009; 6 (2): 296–310. DOI: 10.1007/s10393-009- 0248-7.

10. Jori F., Chenais E., Boinas F., Busauskas P., Dhollander S., Fleischmann L., et al. Application of the World Café method to discuss the efficiency of African swine fever control strategies in European wild boar (Sus scrofa) populations. Prev. Vet. Med. 2020; 185:105178. DOI: 10.1016/j. prevetmed.2020.105178.

11. Probst C., Globig A., Knoll B., Conraths F. J., Depner K. Behaviour of free ranging wild boartowardstheir dead fellows: potential implicationsfor the transmission of African swine fever. R. Soc. Open Sci. 2017; 4 (5):170054. DOI: 10.1098/rsos.170054. 12. Masiulis M., Bušauskas P., Jonušaitis V., Pridotkas G. Potential role of domestic pig carcasses disposed in the forest for the transmission of African swine fever. Berl. Münch. Tierärztl. Wochenschr. 2018; 131. DOI: 10.2376/0005-9366-18014.

12. Guberti V., Khomenko S., Masiulis M., Kerba S. African swine fever in wild boar ecology and biosecurity. FAO Animal Production and Health ManualNo. 22. Rome: FAO, OIE and EC; 2019. 96 p. DOI: 10.4060/CA5987EN.

13. Mushagalusa C. A., Penrith M. L., Etter E. M. C. Spatiotemporal analysis of African swine fever outbreaks on South African smallholder farms, 1993–2018. J. S. Afr. Vet. Assoc. 2022; 93 (2): 82–88. DOI: 10.36303/JSAVA.161.

14. Mogano K., Suzuki T., Mohale D., Phahladira B., Ngoepe E., Kamata Y., et al. Spatio-temporal epidemiology of animal and human rabies in northern South Africa between 1998 and 2017. PLoS Negl. Trop. Dis. 2022; 16 (7):e0010464. DOI: 10.1371/journal.pntd.0010464.

15. Lu X., Ward M. P. Spatiotemporal analysis of reported classicalswine fever outbreaks in China (2005–2018) and the influence of weather. Transbound. Emerg. Dis. 2022; 69 (5):e3183–e3195. DOI: 10.1111/tbed.14452.

16. GonzálezGordonL., PorphyreT., MuhanguziD., MuwongeA., BodenL., Bronsvoort B. M. C. A scoping review of foot-and-mouth disease risk, based on spatial and spatio-temporal analysis of outbreaks in endemic settings. Transbound. Emerg. Dis. 2022; 69 (6): 3198–3215. DOI: 10.1111/tbed.14769.

17. Gayawan E., Lima E. E. C. A spatio-temporal analysis of cause-specific mortality in São Paulo State, Brazil. Cien. Saude Colet. 2022; 27 (1): 287–298. DOI: 10.1590/1413-81232022271.32472020.

18. Wang Z., Dong W., Yang K. Spatiotemporal analysis and risk assessment model research of diabetes among people over 45 years old in China. Int. J. Environ. Res. Public Health. 2022; 19 (16):9861. DOI: 10.3390/ ijerph19169861.

19. KulldorffM. Aspatialscanstatistic. CommunicationsinStatistics –Theory and Methods.1997; 26 (6): 1481–1496. DOI: 10.1080/03610929708831995.

20. Kulldorff M., Heffernan R., Hartman J., Assunção R., Mostashari F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2005; 2 (3):e59. DOI: 10.1371/journal.pmed.0020059.

21. Kulldorff M. Prospective time periodic geographical disease surveillance using a scan statistic. J. R. Stat. Soc. Ser. A. 2001; 164 (1): 61–72. DOI: 10.1111/1467-985X.00186.

22. Nobre F. F., Stroup D. F. A monitoring system to detect changes in public health surveillance data. Int. J. Epidemiol. 1994; 23 (2): 408–418. DOI: 10.1093/ije/23.2.408.

23. SaTScanTM. Software for the spatial and space-time scan statistics. Режим доступа: https://www.satscan.org.

24. EFSA, Boklund A., Cay B., Depner K., Földi Z., Guberti V., et al. Epidemiological analyses of African swine fever in the European Union (November 2017 untilNovember 2018). EFSA J. 2018; 16 (11):е05494. DOI: 10.2903/j. efsa.2018.5494.

25. Lange M., Guberti V., Thulke H.-H. Understanding ASF spread and emergency control concepts in wild boar populations using individualbased modelling and spatio-temporal surveillance data. EFSA supp. publ. 2018; 15 (11):EN-1521. 46 р. DOI: 10.2903/sp.efsa.2018.EN-1521.

26. Lange M., Reichold A., Thulke H.-H. Modelling advanced knowledge of African swine fever, resulting surveillance patterns at the population level and impact on reliable exit strategy definition. EFSA supp. publ. 2021; 18 (3):EN-6429. 61 р. DOI: 10.2903/sp.efsa.2021.EN-6429.

27. Lim J.-S., Vergne T., Pak S.-I., Kim E. Modelling the spatial distribution of ASF-positive wild boar carcasses in South Korea using 2019–2020 nationalsurveillance data. Animals (Basel). 2021; 11 (5):1208. DOI: 10.3390/ ani11051208.

28. GervasiV., Marcon A., Bellini S., GubertiV. Evaluation ofthe efficiency of active and passive surveillance in the detection of African swine fever in wild boar. Vet. Sci. 2019; 7 (1):5. DOI: 10.3390/vetsci7010005.

29. Mazur-PanasiukN., ŻmudzkiJ., Woźniakowski G. African swine fever virus – persistence in different environmental conditions and the possibility of its indirect transmission. J. Vet. Res. 2019; 63 (3): 303–310. DOI: 10.2478/ jvetres-2019-0058.

30. Fischer M., Hühr J., Blome S., Conraths F. J., Probst C. Stability of African swine fever virus in carcasses of domestic pigs and wild boar ex perimentally infected with the ASFV “Estonia 2014” isolate. Viruses. 2020; 12 (10):1118. DOI: 10.3390/v12101118.

31. Kramer-Schadt S., Fernández N., Eisinger D., Grimm V., Thulke H.-H. Individual variations in infectiousness explain long-term disease persistence in wildlife populations. Oikos. 2009; 118 (2): 199–208. DOI: 10.1111/j.1600-0706.2008.16582.x.

32. O’Neil X., White A., Ruiz-Fons F., Gortázar C. Modelling the transmission and persistence of African swine fever in wild boar in contrasting European scenarios. Sci. Rep. 2020; 10 (1):5895. DOI: 10.1038/s41598-020- 62736-y.

33. EFSA, Nielsen S. S., Alvarez J., Bicout D. J., Calistri P., Depner K., et al. ASF exitstrategy: providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J. 2021; 19 (3):е06419. DOI: 10.2903/j.efsa.2021.6419.

34. Podgórski T., Śmietanka K. Do wild boar movements drive the spread of African swine fever? Transbound. Emerg. Dis. 2018; 65 (6): 1588– 1596. DOI: 10.1111/tbed.12910.

35. Zani L., Masiulis M., Bušauskas P., Dietze K., Pridotkas G., Globig A., et al. African swine fever virussurvival in buried wild boar carcasses. Transbound. Emerg. Dis. 2020; 67 (5): 2086–2092. DOI: 10.1111/tbed.13554.

36. Gervasi V., Guberti V. African swine fever endemic persistence in wild boar populations: key mechanisms explored through modelling. Transbound. Emerg. Dis. 2021; 68 (5): 2812–2825. DOI: 10.1111/tbed.14194.


Review

For citations:


Zakharova O.I., Blokhin A.A., Burova O.A., Yashin I.V., Korennoy F.I. Spatiotemporal analysis of African swine fever spread in wild boar population in Russian Federation, 2007–2022. Veterinary Science Today. 2023;12(1):57-65. https://doi.org/10.29326/2304-196X-2023-12-1-57-65

Views: 988


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)