Preview

Veterinary Science Today

Advanced search

Features of model coronaviruses distribution in feline organs and tissues in the context of COVID-19 pathogenesis study

https://doi.org/10.29326/2304-196X-2023-12-1-38-44

Abstract

To date, the reisreason to believe that, unlike classical a cuterespiratory virusinfections caused by adenoviruses, rhinoviruses, orthomyxoviruses, COVID-19 behaves completely differently. Firstly, the pathological process esare likely to be immune-mediated and the immun esystem quites lowly ensurest heelimination of the virus from the organism. Secondly, the dynamics of the diseases ymptom development and the duration of intestinal virusshedding after recovery give reason to believe that theSARS-CoV-2 infection is mainly localizedin the intestine. A possible reason isthat in the presence of proteolyticenzymes, viral particlesmature, hydrophilic aminoacids are removed from the surface of the virion, making it more hydrophobic and able to ad here to cells due to hydrophobic interactions. The presence of the ACE2 recept or mainly in the enterocytes of the ileumdoes not exclude the accumulation of coronavirusin lymphocytes, given that there are more lymphocytes in the gastrointestinal tract than anywhere else, this fact can beconsidered as another justification for the predominant accumulation of coronaviruses, including SARS-CoV-2 in the intestine. A distinctive feature of feline coronavirus infection and, in particular, infectious feline peritonitis, from human COVID-19 infection was considered to be the presence of effusion peritonitis as the main complication leading to death, while respiratory and card iovascular in sufficiency is more characteristic for humans. Never the less, cases of serous peritonitis in humans infected with COVID-19 have already been described. In the context of the analyzed modeltheclinical case describedin the study allows principal possibility of exacerbation of chronic coronavirus infection in caseof re-infection (superinfection) and development of apredominantlylocal infection. 

About the Authors

V. N. Afonyushkin
FSSFEI HE “Novosibirsk State Agricultural University” (FSSFEI HE Novosibirsk SAU); Siberian Federal Research Center of Agrobiotechnologies of the Russian Academy of Sciences (SFSCA RAS); Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS)
Russian Federation

Vasiliy N. Afonyushkin, Candidate of Science (Biology), Head of Sector, SFSCA RAS, Krasnoobsk; Researcher of the ICBFM SB RAS; Associate Professor of the Department of Epizootology and Microbiology, FSSFEI HE Novosibirsk SAU

Krasnoobsk, Novosibirsk Oblast

Novosibirsk



O. E. Sysoeva
FSSFEI HE “Novosibirsk State Agricultural University” (FSSFEI HE Novosibirsk SAU)
Russian Federation

Olga E. Sysoeva, 4th year Undergraduate Student of Veterinary and Sanitary Expert, Faculty of  Veterinary Medicine

Novosibirsk



O. S. Kozlova
FSSFEI HE “Novosibirsk State Agricultural University” (FSSFEI HE Novosibirsk SAU)
Russian Federation

Olga S. Kozlova, Senior Lecturer, Department of Veterinary and Sanitary Examination and Parasitology

Novosibirsk



D. V. Shamovskaya
Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (ICBFM SB RAS)
Russian Federation

Daria V.  Shamovskaya, Junior Researcher

Novosibirsk



References

1. Kupriianov I. I. Circulation of SARS-CoV-2 and manifestation of COVID-19 in house cat (Felis catus). Animal Agriculture and Veterinary Medicine. 2022; 2 (45): 59–65. eLIBRARY ID: 49056737. (in Russ.)

2. JaimesJ. A., MilletJ. K., Stout A. E., André N. M., WhittakerG. R. A tale of two viruses: the distinctspike glycoproteins of feline coronaviruses. Viruses. 2020; 12 (1):83. DOI: 10.3390/v12010083.

3. Kulikov E. V., VatnikovY. A., Sakhno N. V., Popova I. A., Gnezdilova L. A., Kuznetsov V. I., Strizhakov A. A. Pathologicoanatomical characteristics of feline infectious peritonitis. RJOAS. 2017; 4 (64): 270–280. DOI: 10.18551/ rjoas.2017-04.34. (in Russ.)

4. Chang H. W., Egberink H. F., Halpin R., Spiro D. J., Rottier P. J. Spike protein fusion peptide and feline coronavirus virulence. Emerg. Infect. Dis. 2012; 18 (7): 1089–1095. DOI: 10.3201/eid1807.120143.

5. Jaimes J. A., Whittaker G. R. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology. 2018; 517: 108–121. DOI: 10.1016/j.virol.2017.12.027.

6. Khaitovich A. B. Coronavirus (genome structure, replication). Crimea Journal of Experimental and Clinical Medicine. 2020; 4 (10): 78–95. DOI: 10.37279/2224-6444-2020-10-4-78-95. (in Russ.)

7. Myrrha L. W., Silva F. M., Peternelli E. F., Junior A. S., Resende M., de Almeida M. R. The paradox of feline coronavirus pathogenesis: a review. Adv. Virol. 2011; 2011:109849. DOI: 10.1155/2011/109849.

8. Giordano A., Spagnolo V., Colombo A., Paltrinieri S. Changesin some acute phase protein and immunoglobulin concentrations in cats affected by feline infectious peritonitis or exposed to feline coronavirus infection. Vet. J. 2004; 167 (1): 38–44. DOI: 10.1016/s1090-0233(03)00055-8.

9. ZhangQ., Zhang H., Huang K., YangY., Hui X., Gao J., et al. SARS-CoV-2 neutralizing serum antibodies in cats: a serological investigation. bioRxiv. 2020. DOI: 10.1101/2020.04.01.021196.

10. Halfmann P. J., Hatta M., Chiba S., Maemura T., Fan S., Takeda M., et al. Transmission of SARS-CoV-2 in domestic cats. N. Engl. J. Med. 2020; 383 (6): 592–594. DOI: 10.1056/NEJMc2013400.

11. Barsegyan L. S., Sukharev O. I., Kulikov Ye. V. Feline infectious peritonitis virusinfection (literature review). ActualQuestions of Veterinary Biology. 2015; 1 (25): 16–23. eLIBRARY ID: 23118810. (in Russ.)

12. Terekhova Yu. O., Tsibezov V. V., Rakhmanina N. A., Verkhovsky O. A. Immunoblotting assay for detection of coronaviruses antibodiesfor feline infectious peritonitis (FIP) diagnosis. Russian Veterinary Journal. Small Pets and Wild Animals. 2012; 4: 26–28. eLIBRARY ID: 17863566. (in Russ.)

13. Massoth L. R., Desai N., Szabolcs A., Harris C. K., Neyaz A., Crotty R., et al. Comparison of RNA in situ hybridization and immunohistochemistry techniques for the detection and localization of SARS-CoV-2 in human tissues. Am. J. Surg. Pathol. 2021; 45 (1): 14–24. DOI: 10.1097/ PAS.0000000000001563.

14. Buryachkovskaya L. I., Melkumyants A. M., Lomakin N. V., Antonova O. A., Ermishkin V. V. Injury of vascular endothelium and erythrocytes in COVID-19 patients. Consilium Medicum. 2021; 23 (6): 469–476. DOI: 10.264 42/20751753.2021.6.200939. (in Russ.)

15. Jackwood M. W., Hall D., Handel A. Molecular evolution and emergence of avian gammacoronaviruses. Infect. Genet. Evol. 2012; 12 (6): 1305– 1311. DOI: 10.1016/j.meegid.2012.05.003.

16. Sarsenbaeva A. S., Lazebnik L. B. Features of intestinal damage in COVID-19. Experimental and clinical gastroenterology. 2020; 184 (12): 16–22. DOI: 10.31146/1682-8658-ecg-184-12-16-22. (in Russ.)


Review

For citations:


Afonyushkin V.N., Sysoeva O.E., Kozlova O.S., Shamovskaya D.V. Features of model coronaviruses distribution in feline organs and tissues in the context of COVID-19 pathogenesis study. Veterinary Science Today. 2023;12(1):38-44. https://doi.org/10.29326/2304-196X-2023-12-1-38-44

Views: 268


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)