Preview

Veterinary Science Today

Advanced search

Optimization of medium composition and study of growth stages of Mycoplasma bovis “Kaluga 2020” isolate

https://doi.org/10.29326/2304-196X-2022-11-3-262-267

Abstract

Mycoplasma bovis is considered one of bovine mycoplasmosis pathogens responsible for respiratory diseases, mastitis, arthritis and keratoconjunctivitis. The paper presents results of the study on optimizing the component composition of the culture medium for Mycoplasma bovis “Kaluga 2020” isolate, as well as the study of this pathogen’s growth stages. The color-changing units assay and the culture method combined with colony-forming unit quantification were used for determination of Mycoplasma activity. It was found that when cultured in an optimized nutrient medium based on modified Hayflick broth, the microorganism enters a logarithmic growth phase after first 24 hours ofgrowth, in 72 hours the Mycoplasma culture enters astability phase, and adecline phase is recorded in 84 hours. The effect of percentage content of glucose, fresh yeast extract and horse serum in the nutrient medium on accumulation of Mycoplasma bovis “Kaluga2020” isolate was evaluated using the one-factor-at-a-time approach. It was found that the greatest effect on Mycoplasma accumulation was exerted by such growth factors as fresh yeast extract and horse serum in the nutrient medium (p < 0.05), while changes in the amount of glucose did not stimulate Mycoplasma bovis growth. Based on results of the conducted studies, the appropriate composition was determined and the optimal content of growth factors in the medium for culturing Mycoplasma bovis “Kaluga 2020” isolate was selected: 12.5%of fresh yeast extract and 25% of horse serum. The use of the optimized nutrient medium based on modified Hayflick broth allowed 5-fold increase in accumulation of Mycoplasma biomass (3.98 × 109CFU/ml)compared to the standard medium (0.79 × 109CFU/ml).

About the Authors

M. Abed Alhussen
People’s Friendship Universityof Russia (RUDN University)
Russian Federation

Mohammad Abed Alhussen, Post-Graduate Student, Department of Veterinary Medicine, Agrarian and Technological Institute

Moscow



A. A. Nesterov
FGBI “Federal Centrefor Animal Health” (FGBI “ARRIAH”)
Russian Federation

Alexander А. Nesterov, Candidate of Science (Veterinary Medicine), Senior Researcher, Reference Laboratory for Bovine Diseases

Vladimir



A. V. Sprygin
FGBI “Federal Centrefor Animal Health” (FGBI “ARRIAH”)
Russian Federation

Alexander V. Sprygin, Candidate of Science (Biology), Senior Researcher, Reference Laboratory for Bovine Diseases

Vladimir



I. N. Shumilova
FGBI “Federal Centrefor Animal Health” (FGBI “ARRIAH”)
Russian Federation

Irina N. Shumilova, Candidate of Science (Veterinary Medicine), Senior Researcher, Reference Laboratory for Bovine Diseases

Vladimir



M. S. Bryantseva
FGBI “Federal Centrefor Animal Health” (FGBI “ARRIAH”)
Russian Federation

Maria S. Bryantseva, Leading Biologist, Laboratory for Porcine and Horned Livestock Prevention

Vladimir



O. P. Byadovskaya
FGBI “Federal Centrefor Animal Health” (FGBI “ARRIAH”)
Russian Federation

Olga P. Byadovskaya, Candidate of Science (Biology), Head of Reference Laboratory for Bovine Diseases

Vladimir



References

1. Abed Alhussen M., Nesterov A. A., Kirpichenko V. V., Yatsentyuk S. P., Sprygin A. V., Byadovskaya O. P., Kononov A. V. Bovine mycoplasmosis occurrence on livestock farms in the Russian Federation for 2015–2018. Veterinary Science Today. 2020; (2): 102–108. DOI:10.29326/2304-196X2020-2-33-102-108.

2. Parker A. M., Sheehy P. A., Hazelton M. S., Bosward K. L., House J. K. A review of mycoplasma diagnostics in cattle. J. Vet. Intern. Med. 2018; 32 (3): 1241–1252. DOI:10.1111/jvim.15135.

3. Kurćubić V., Doković R., Ilić Z., Petrović M. Etiopathogenesis and economic significance of bovine respiratory disease complex (BRDC). Acta Agric. Serbica. 2018; 23 (45): 85–100. DOI:10.5937/AASer1845085K.

4. Niu J., Wang D., Yan M., Chang Z., Xu Y., Sizhu S., et al. Isolation, identification and biological characteristics of Mycoplasma bovis in yaks. Microb. Pathog. 2021; 150:104691. DOI:10.1016/j.micpath.2020.104691.

5. Hale H. H., Helmboldt C. F., Plastridge W. N., Stula E. F. Bovine mastitis caused by a Mycoplasma species. Cornell Vet. 1962; 52: 582–591. PMID:13952069.

6. Abed Alhussen M., Kirpichenko V. V., Yatsentyuk S. P., Nesterov A. A., Byadovskaya O. P., Zhbanova T. V., Sprygin A. V. Mycoplasma bovis, M. bovigenitalium and M. dispar as bovine pathogens: brief characteristics of the pathogens (review). Agricultural Biology. 2021; 56 (2): 245–260. DOI:10.15389/agrobiology.2021.2.245eng.

7. Nicholas R. A., Ayling R. D. Mycoplasma bovis: disease, diagnosis, and control. Res. Vet. Sci. 2003; 74 (2): 105–112. DOI:10.1016/s00345288(02)00155-8.

8. Andersson A. M., Aspán A., Wisselink H. J., Smid B., Ridley A., Pelkonen S., et al. European inter-laboratory trial to evaluate the performance of three serological methods for diagnosis of Mycoplasma bovis infection in cattle using latent class analysis. BMC Vet. Res. 2019; 15 (1): 369. DOI:10.1186/s12917-019-2117-0.

9. Montagnani F., Rossetti B., Vannoni A., Cusi M. G., De Luca A. Laboratory diagnosis of Mycoplasma pneumoniae infections: data analysis from clinical practice. New Microbiol. 2018; 41 (3): 203–207. PMID:29874388.

10. Pfützner H., Sachse K. Mycoplasma bovis as an agent of mastitis, pneumonia, arthritis and genital disorders in cattle. Rev. Sci. Tech. 1996; 15 (4): 1477–1494. DOI:10.20506/rst.15.4.987.

11. Poumarat F., Longchambon D., Martel J. L. Application of dot immunobinding on membrane filtration (MF dot) to the study of relationships within “M. mycoides cluster” and within “glucose and arginine-negative cluster” of ruminant mycoplasmas. Vet. Microbiol. 1992; 32 (3–4): 375–90. DOI:10.1016/0378-1135(92)90159-q.

12. Nicholas R., Baker S. Recovery of mycoplasmas from animals. Methods Mol. Biol. 1998; 104: 37–43. DOI:10.1385/0-89603-525-5:37.

13. Hwang M. H., Damte D., Cho M. H., Kim Y. H., Park S. C. Optimization of culture media of pathogenic Mycoplasma hyopneumoniae by a response surface methodology. J. Vet. Sci. 2010; 11 (4): 327–332. DOI:10.4142/jvs.2010.11.4.327.

14. Duta F. P., De França F. P., Sérvulo E. F. C., De Almeida Lopes L. M., Da Costa A. C. A., Barros A. Effect of process parameters on production of a biopolymer by Rhizobium sp. Appl. Biochem. Biotechnol. 2004; 114: 639–652. DOI:10.1385/abab:114:1-3:639.

15. Assunção P., Rosales R. S., Rifatbegović M., Antunes N. T., de la Fe C., Ruiz de Galarreta C. M., Poveda J. B. Quantification of mycoplasmas in broth medium with sybr green-I and flow cytometry. Front. Biosci. 2006; 11: 492–497. DOI:10.2741/1812.

16. Hayflick L. Tissue cultures and mycoplasmas. Tex. Rep. Biol. Med. 1965; 23: Suppl 1:285–303. PMID:5833547.

17. Garcia-Morante B., Dors A., León-Kempis R., Pérez de Rozas A., Segalés J., Sibila M. Assessment of the in vitro growing dynamics and kinetics of the non-pathogenic J and pathogenic 11 and 232 Mycoplasma hyopneumoniae strains. Vet. Res. 2018; 49 (1):45. DOI:10.1186/s13567-018-0541-y.

18. Friis N. F. Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare a survey. Nord. Vet. Med. 1975; 27 (6): 337–339. PMID:1098011.

19. Poveda J. B., Nicholas R. Serological identification of mycoplasmas by growth and metabolic inhibition tests. Methods Mol. Biol. 1998; 104: 105–111. DOI:10.1385/0-89603-525-5:105.

20. Calus D., Maes D., Vranckx K., Villareal I., Pasmans F., Haesebrouck F. Validation of ATP luminometry for rapid and accurate titration of Mycoplasma hyopneumoniae in Friis medium and a comparison with the color changing units assay. J. Microbiol. Methods. 2010; 83 (3): 335–340. DOI:10.1016/j.mimet.2010.09.001.

21. Jiang Z., Li S., Zhu C., Zhou R., Leung P. H. M. Mycoplasma pneumoniae infections: Pathogenesis and vaccine development. Pathogens. 2021; 10 (2):119. DOI:10.3390/pathogens10020119.

22. Stemke G. W., Robertson J. A. The growth response of Mycoplasma hyopneumoniae and Mycoplasma flocculare based upon ATP-dependent luminometry. Vet. Microbiol. 1990; 24 (2): 135–142. DOI:10.1016/03781135(90)90061-y.

23. Cook B. S., Beddow J. G., Manso-Silván L., Maglennon G. A., Rycroft A. N. Selective medium for culture of Mycoplasma hyopneumoniae. Vet. Microbiol. 2016; 195: 158–164. DOI:10.1016/j.vetmic.2016.09.022.

24. Friis N. F., Szancer J. Sensitivity of certain porcine and bovine mycoplasmas to antimicrobial agents in a liquid medium test compared to a disc assay. Acta Vet. Scand. 1994; 35 (4): 389–394. DOI:10.1186/BF03548313.


Review

For citations:


Abed Alhussen M., Nesterov A.A., Sprygin A.V., Shumilova I.N., Bryantseva M.S., Byadovskaya O.P. Optimization of medium composition and study of growth stages of Mycoplasma bovis “Kaluga 2020” isolate. Veterinary Science Today. 2022;11(3):262-267. https://doi.org/10.29326/2304-196X-2022-11-3-262-267

Views: 633


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)