Preview

Veterinary Science Today

Advanced search

Actual bovine tuberculosis situation in the Republic of Dagestan

https://doi.org/10.29326/2304-196X-2022-11-3-222-228

Abstract

Lack of statistical data and inconsistences in science and practice make it impossible to give at least approximate tuberculosis prevalence rates in the Republic of Dagestan. Every year the number of tuberculin reacting animals is increasing. For example out of 2,944 tested heifers of breeding age in 2014–2019, up to 30% of animals had positive reactions in tests. During this period out of 1,166 emergency slaughtered animals, tuberculosis was confirmed in 326 animals (28%). Bacteriological tests revealed 291 mycobacterium cultures, 107 out of them were Mycobacterium bovis, the other 184 cultures were identified as atypical ones. Based on the species differentiation of 58 cultures, 22 Group II cultures (according to Runyon classification) were isolated; 18 out of them belonged to Mycobacterium gordonae, 2 to Mycobacterium flavescens, and species of two cultures could not be identified. Four cultures of Group III were species of Mycobacterium intracellulare. Out of 32 cultures of Group IV, two belonged to Mycobacterium smegmatis, seven to Mycobacterium fortuitum and one to Mycobacterium phlei, 22 cultures were not identified. To elucidate the role of milk in tuberculosis epidemiology 82 samples of milk from reactors from two farms were tested. In the farm, where reactors were awaiting their removal for a long time, mycobacteria were detected in 20% of milk samples, whereas in the recently infected farm the detection rate was 4%, which suggests that long awaiting periods present high risks. Microscopic, conventional phenotypic and targeted biochemical tests indicate that pseudo-allergic reactions, revealed by tests, result from the atypical mycobacteria of the mentioned groups and species, which present in the animal organism, and seem to be responsible for the tuberculin sensibilization. Timely and comprehensive diagnostic and animal health measures will improve the situation.

About the Authors

M. O. Baratov
Caspian Regional Research Veterinary Institute – Branch of Dagestan Agriculture Science Center
Russian Federation

Magomed O. Baratov, Doctor of Science (Veterinary Medicine), Chief Researcher, Deputy Director for Research,

Makhachkala, Republicof Dagestan



P. S. Huseynova
Caspian Regional Research Veterinary Institute – Branch of Dagestan Agriculture Science Center
Russian Federation

Patimat S. Huseynova, Researcher, Laboratory for Infectious Pathology of Livestock

Makhachkala, Republicof Dagestan



References

1. Baratov M. O. Improvement of bovine tuberculosis diagnosis. Veterinary Science Today. 2020; (4): 261–265. DOI:10.29326/2304-196X-2020-435-261-265.

2. Baratov M. O., Sakidibirov O. P. Cattle tuberculosis in Dagestan Republic: problems and prospects. Veterinariya. 2021; 1: 24–28. DOI:10.30896/0042-4846.2021.24.1.24-28. (in Russ.)

3. Naimanov A. Kh., Kalmykov V. M. Tuberculosis of animals: monography. Saint Petersburg: Lan’; 2021. 504 р. (in Russ.)

4. Vlasenko V. S. Optimizatsiya metodov kontrolya i korrektsii immunnogo statusa pri tuberkuleze i leikoze krupnogo rogatogo skota = Optimization of immunity control and correction methods during bovine tuberculosis and leucosis: thesis abstract … Doctor of Biological Sciences. Kazan; 2011. 43 р. Available at: https://viewer.rsl.ru/ru/rsl01004849018?page=1&rotate=0&theme=white. (in Russ.)

5. DonchenkoN. A. Usovershenstvovanie sredstv i metodov diagnostiki i profilaktiki tuberkuleza krupnogo rogatogo skota = Improvement of bovine tuberculosis diagnosis and prevention tools and methods: thesis abstract … Doctor ofVeterinary Sciences. Novosibirsk; 2008. 36 р. Available at: https://viewer.rsl.ru/ru/rsl01003168339?page=1&rotate=0&theme=white. (in Russ.)

6. Grebennikova T. V., Nepoklonov E. A. Detection and identification of Mycobacteria isolates from human clinical samples. 9th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). Berlin; March 21–24, 1999; 204.

7. Baratov M. O., Huseynova P. S. More on search for causes of sensitization to tuberculin PPDfor mammalsin cattle. Veterinary Science Today. 2021; (4): 271–276. DOI:10.29326/2304-196X-2021-10-4-271-276.

8. Shenzhanov K. T. Biotekhnologicheskie osnovy sovershenstvovaniya diagnostiki tuberkuleza = Biotechnological principles of tuberculosis diagnosisimprovement. Veterinarnaya patologiya. 2004; 1–2: 137–138. eLIBRARY ID: 9165660. (in Russ.)

9. Thoen C. O., Hall M. R., Tannis A., Petersburg B. S., Harrington R. Detection of mycobacterial antibodiesin sera of cattle experimentally exposed to Mycobacterium bovis by use of a modified enzyme-linked immunosorbent assay. Proceedings of Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians. 1984; 26: 25–38.

10. Mukovnin A. A., Naimanov A. H., Gulukin A. M. Bovine tuberculosis in the Russian Federation. Veterinariya. 2020; 7: 19–24. DOI:10.30896/00424846.2020.23.7.19-24. (in Russ.)

11. Mingaleev D. N. Novye sredstva i metody profilaktiki tuberkuleza molodnyaka krupnogo rogatogo skota = Novel tools and methods of bovine tuberculosis prevention in young animals: thesis abstract … Doctor of Veterinary Sciences. Kazan; 2018. 42 р. Available at: https://viewer.rsl.ru/ru/rsl01008706808?page=1&rotate=0&theme=white. (in Russ.)

12. Wood P. R., Rothel J. S. In vitro immunodiagnostic assays for bovine tuberculosis. Vet. Microbiol. 1994; 40 (1-2): 125–135. DOI:10.1016/03781135(94)90051-5.

13. Gavrilova G. A., Makarov Yu. A., Vasil’chenko G. A. Allergicheskie tuberkulinovye reaktsii u zhivotnykh, infitsirovannykh virusom leikoza = Tuberculin allergic reactions in animals infected with bovine leukemia virus. Veterinarnaya patologiya. 2004; 1–2: 156–159. eLIBRARY ID: 9165668. (in Russ.)

14. Kamalieva Yu. R. Retrospective analysis of frequency of the occurrence of non-specific reactions to tuberculin in cattle in the Republic of Tatarstan. Molodezhnye razrabotki i innovatsii v reshenii prioritetnykh zadach APK: materialy Mezhdunarodnoi nauchnoi konferentsii studentov, aspirantov i uchashcheisya molodezhi, posvyashchennoi 90-letiyu obrazovaniya kazanskoi zootekhnicheskoi shkoly = Young scientists’ development and innovations to solve priority agrarian tasks: proceedings of the International scientific conference of students, post-graduate students and studying youth, devoted to 90th anniversary of Kazan animal science. Kazan: Kazan SAVM; 2020; 1: 278–280. eLIBRARY ID: 43921944. (in Russ.)

15. Bokova T. V. Chastota nespetsificheskogo reagirovaniya na PPD-tuberkulin krupnogo rogatogo skota, infitsirovannogo BVL, i razrabotka skhem ozdorovleniya plemennykh stad ot leikoza v Altaiskom krae = Frequency of non-specific reactions to PPD tuberculin in BVL infected cattle, and development of leucosis eradication programmes for breeding herds in the Altay Krai: thesis abstract … Doctor of Veterinary Sciences. Barnaul; 2001. 27 р. (in Russ.)

16. Dzhupina S. I. Fundamental’nye znaniya epizooticheskogo protsessa – osnova kontrolya tuberkuleza krupnogo rogatogo skota = Fundamental knowledge of the epidemic process – the basis of bovine tuberculosis control. Veterinarnaya patologiya. 2004; 1–2: 45–47. eLIBRARY ID: 9165623. (in Russ.)

17. Donchenko A. S., Donchenko N. A., Kolosov A. A. Differential diagnosis of tuberculin reactions in tuberculosis-free farms: guidelines. Novosibirsk; 2002. 7 р. (in Russ.)

18. Ionina S. V., Donchenko N. A., Donchenko A. S. The relationship between the circulation of atypical mycobacteria in the environment with the manifestation of tuberculin reactions in selskohozaystvennih. Innovations and Food Safety. 2016; (1): 41–44. DOI:10.31677/2311-0651-2016-0-1-4144. (in Russ.)

19. Dubovoi B. L., Polyakova O. N. Issledovaniya spetsifichnosti i aktivnosti RSLL pri diagnostike tuberkuleza krupnogo rogatogo skota = Studies ofspecificity and performance ofspecific leukocyte lysis method for bovine tuberculosis diagnosis. Innovatsionnyi put’ razvitiya APK – magistral’noe napravlenie nauchnykh issledovanii dlya sel’skogo khozyaistva: materialy Mezhdunarodnoi nauchno-prakticheskoi konferentsii = Innovative trend in agrarian industry development – mainstreams of agricultural research: proceedings of the International scientific and practical conference. pos. Persianovskii, Rostov Oblast: FSEI VPO Don SAU; 2007; 67–69. (in Russ.)

20. Koshkin I. N., Vlasenko V. S., Bazhin M. A. Functional activity of neutrophils in guinea pigs, immunized with conjugates, based on BCG antigens with betulin and its derivatives. Bulliten KrasSAU. 2021; 5: 116–121. DOI:10.36718/1819-4036-2021-5-116-121. (in Russ.)

21. Protod’yakonova G. P. Epizootologicheskie i epidemiologicheskie osobennosti tuberkuleza v Yakutii, usovershenstvovanie metodov diagnostiki i spetsificheskoi profilaktiki = Epizootological and epidemiological peculiarities of tuberculosis in Yakutia, improvement of diagnosis and prevention methods: thesis abstract … Doctor of Veterinary Sciences. Novosibirsk; 2015. 35 р. Available at: https://viewer.rsl.ru/ru/rsl01005562709?page=1&rotate=0&theme=white. (in Russ.)

22. Skinner M. A., Buddle B. M., Wedlock D. N., Keen D., de Lisle G. W., Tascon R. E., et al. ADNA prime-Mycobacterium bovis BCGboost vaccination strategy for cattle induces protection against bovine tuberculosis. Infect. Immun. 2003; 71 (9): 4901–4907. DOI:10.1128/IAI.71.9.4901-4907.2003.

23. Dean G., Whelan A., Clifford D., Salguero F. J., Xing Z., Gilbert S., et al. Comparison of the immunogenicity and protection against bovine tuberculosis following immunization by BCG-priming and boosting with adenovirus or protein based vaccines. Vaccine. 2014; 32 (11): 1304–1310. DOI:10.1016/j.vaccine.2013.11.045.

24. Wedlock D. N., Denis M., Painter G. F., Ainge G. D., Vordermeier H. M., Hewinson R. G., Buddle B. M. Enhanced protection against bovine tuberculosis after coadministration of Mycobacterium bovis BCG with a mycobacterial protein vaccine-adjuvant combination but not after coadministration of adjuvant alone. Clin. Vaccine Immunol. 2008; 15 (5): 765–772. DOI:10.1128/CVI.00034-08.

25. Harriff M. J., Cansler M. E., Toren K. G., Canfield E. T., Kwak S., Gold M. C., Lewinsohn D. M. Human lung epithelial cells contain Mycobacterium tuberculosis in a late endosomal vacuole and are efficiently recognized by CD8+ T cells. PLoS One. 2014; 9 (5):e97515. DOI:10.1371/journal.pone.0097515.

26. Monin L., Griffiths K. L., Slight S., LinY., Rangel-Moreno J., Khader S. A. Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol. 2015; 8 (5): 1099–1109. DOI:10.1038/mi.2014.136.

27. Khan A., Singh V. K., Hunter R. L., Jagannath C. Macrophage heterogeneity and plasticity in tuberculosis. J. Leukoc. Biol. 2019; 106 (2): 275–282. DOI:10.1002/JLB.MR0318-095RR.

28. Laboratory diagnosis of TB. Methodical materials for thematic improvement cycle. Ed. by V. V. Erokhin. Moscow: R.Valent; 2012. 704 p. (in Russ.)


Review

For citations:


Baratov M.O., Huseynova P.S. Actual bovine tuberculosis situation in the Republic of Dagestan. Veterinary Science Today. 2022;11(3):222-228. https://doi.org/10.29326/2304-196X-2022-11-3-222-228

Views: 337


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)