Monkeypox and other orthopoxvirus zoonoses
https://doi.org/10.29326/2304-196X-2022-11-3-194-202
Abstract
The paper highlights the current knowledge on infection biology, epidemiology and evolution of monkeypox virus (MPXV), cowpox virus (CPXV), buffalopox virus (CPXV), camelpox virus (CMLPV), as well as addresses some factors that modulate dynamics of orthopoxvirus transmission, manifestation of orthopoxvirus infections and their preservation in nature. Despite the elimination of the historically infamous smallpox, orthopoxviruses remain a serious veterinary and health problem. Their role is currently increasing while the number of persons not immune to smallpox grows. Along with this, there is a genetic transformation of pathogens. In this regard, the risks of human infection with orthopoxviruses of zoonotic nature are increasing. The problem of monkeypox, cowpox, buffalopox and camelpox and the respective agents included in the genus of zoonotic orthopox viruses presents the greatest interest. Along with the increased number of human monkeypox cases in 2020–2022, a retrospective analysis of the last 20 years shows that the activity of monkeypox outbreaks in the XXI century intensified in Central African countries. Cowpox outbreaks in Europe and camelpox outbreaks in Southwestern and Central Asia have also become more active. In 2011, in India, the camelpox virus overcame the interspecies barrier and caused a clinical pox-like disease in humans. Scientists are alarmed by these facts as the camelpox virus genomeis 99% homologous to the genome of the small poxvirus. This requires strengthening the epizootological and epidemiological monitoring of orthopoxvirus zoonotic pathogens.
About the Author
K. N. GruzdevRussian Federation
Konstantin N. Gruzdev, Doctor of Science (Biology), Professor, Chief Researcher, Information and Analysis Centre
Vladimir
References
1. Yang Z., Gray M., Winter L. Why do poxviruses still matter? Cell Biosci. 2021; 11:96. DOI:10.1186/s13578-021-00610-8.
2. Abrahão J. S., Guedes M. I., Trindade G. S., Fonseca F. G., Campos R. K., Mota B. F., et al. One more piece in the VACV ecological puzzle: could peridomestic rodents be the link between wildlife and bovine vaccinia outbreaks in Brazil? PLoS One. 2009; 4 (10):e7428. DOI:10.1371/journal.pone.0007428.
3. Campe H., Zimmermann P., Glos K., Bayer M., Bergemann H., Dreweck C., et al. Cowpox virus transmission from pet rats to humans, Germany. Emerg. Infect. Dis. 2009; 15 (5): 777–780. DOI:10.3201/eid1505.090159.
4. Gurav Y. K., Raut C. G., Yadav P. D., Tandale B. V., Sivaram A., Pore M. D., et al. Buffalopox outbreak in humans and animals in Western Maharashtra, India. Prev. Vet. Med. 2011; 100 (3–4): 242–247. DOI:10.1016/j.prevetmed.2011.03.008.
5. Kinnunen P. M., Henttonen H., Hoffmann B., Kallio E. R., Korthase C., Laakkonen J., et al. Orthopox virusinfectionsin Eurasian wild rodents. Vector Borne Zoonotic Dis. 2011; 11 (8): 1133–1140. DOI:10.1089/vbz.2010.0170.
6. Ninove L., Domart Y., Vervel C., Voinot C., Salez N., Raoult D., et al. Cowpox virus transmission from pet rats to humans, France. Emerg. Infect. Dis. 2009; 15 (5): 781–784. DOI:10.3201/eid1505.090235.
7. Nitsche A., Kurth A., Pauli G. Viremia in human Cowpox virusinfection. J. Clin. Virol. 2007; 40 (2): 160–162. DOI:10.1016/j.jcv.2007.07.014.
8. Besombes C., Gonofio E., Konamna X., Selekon B., Grant R., Gessain A., et al. Intrafamily transmission of monkeypox virus, Central African Republic, 2018. Emerg. Infect. Dis. 2019; 25 (8): 1602–1604. DOI:10.3201/eid2508.190112.
9. Yinka-Ogunleye A., Aruna O., Dalhat M., Ogoina D., McCollum A., Disu Y., et al. Outbreak of human monkeypox in Nigeria in 2017–18: a clinical and epidemiological report. Lancet Infect. Dis. 2019; 19 (8): 872–879. DOI:10.1016/S14733099(19)30294-4.
10. Gujarati R., Reddy Karumuri S. R., Babu T. N., Janardhan B. A case report of buffalopox: A zoonosis of concern. Indian J. Dermatol. Venereol. Leprol. 2019; 85 (3): 348. DOI:10.4103/ijdvl.IJDVL_222_17.
11. Marinaik C. B., Venkatesha M. D., Gomes A. R., Reddy P., Nandini P., ByregowdaS. M. Isolation and molecular characterization of zoonotic Buffalo pox virus from skin lesions of humans in India. Int. J. Dermatol. 2018; 57 (5): 590–592. DOI:10.1111/ijd.13890.
12. RiyeshT., Karuppusamy S., Bera B. C., Barua S., Virmani N., Yadav S., et al. Laboratory-acquired buffalopox virus infection, India. Emerg. Infect. Dis. 2014; 20 (2): 324–326. DOI:10.3201/eid2002.130358.
13. Dahiya S. S., Kumar S., Mehta S. C., Narnaware S. D., Singh R., Tuteja F. C. Camelpox: A brief review on its epidemiology, current status and challenges. Acta Trop. 2016; 158: 32–38. DOI:10.1016/j.actatropica.2016.02.014.
14. Erster O., Melamed S., Paran N., Weiss S., Khinich Y., Gelman B., et al. First diagnosed case of camelpox virus in Israel. Viruses. 2018; 10 (2):78. DOI:10.3390/v10020078.
15. Borisevich S. V., Marennikova S. S., Stovba L. F., Petrov A. A., Krotkov V. T., Makhlai A. A. Buffalopox. Problems of Virology. 2016; 61 (5): 200–204. DOI:10.18821/05074088-2016-61-5-200-204. (in Russ.)
16. Balamurugan V., Venkatesan G., Bhanuprakash V., Singh R. K. Camelpox, an emerging orthopox viral disease. Indian J. Virol. 2013; 24 (3): 295–305. DOI:10.1007/s13337-013-0145-0.
17. Bera B. C., Barua S., Shanmugasundaram K., Anand T., Riyesh T., Vaid R. K., et al. Genetic characterization and phylogenetic analysis of host-range genes of camelpox virus isolates from India. Virus Disease. 2015; 26 (3): 151–162. DOI:10.1007/s13337-015-0266-8.
18. Bera B. C., Shanmugasundaram K., Barua S., Venkatesan G., Virmani N., Riyesh T, et al. Zoonotic cases of camelpox infection in India. Vet. Microbiol. 2011; 152 (1–2): 29–38. DOI:10.1016/j.vetmic.2011.04.010.
19. Khalafalla A. I., Abdelazim F. Human and dromedary camel infection with camelpox virus in Eastern Sudan. Vector Borne Zoonotic Dis. 2017; 17 (4): 281–284. DOI:10.1089/vbz.2016.2070.
20. Gavrilova E. V., Maksyutov R. A., Shchelkunov S. N. Orthopoxvirus infections: epidemiology, clinical picture, and diagnostics (scientific review). Problems of Particularly Dangerous Infections. 2013; (4): 82–88. DOI:10.21055/0370-1069-2013-482-88. (in Russ.)
21. Shchelkunov S. N. An increasing danger of zoonotic orthopoxvirus infections. PLoS Pathog. 2013; 9 (12):e1003756. DOI:10.1371/journal.ppat.1003756.
22. Shchelkunova G. A., Shchelkunov S. N. 40 years without Smallpox. Acta Naturae. 2017; 9 (4): 4–12. PMID:29340212; PMCID: PMC5762823.
23. Babkin I. V., Shchelkunov S. N. Molecular evolution of poxviruses. Russian Journal of Genetics. 2008; 44 (8): 1029–1044. eLIBRARY ID:11031782. (in Russ.)
24. Babkin I. V., Babkina I. N. A retrospective study of the orthopoxvirus molecular evolution. Infect. Genet. Evol. 2012; 12 (8): 1597–1604. DOI:10.1016/j.meegid.2012.07.011.
25. James W., Elston D., Treat J., Rosenbach M., Neuhaus I., Wu Q. Andrews’ Diseases of the Skin: Clinical Dermatology. 13th ed. Elsevier, Inc.; 2019. 1008 p.
26. Babkin I. V. Izuchenie molekulyarnoi evolyutsii ortopoksvirusov = Study of orthopoxvirus molecular evolution: author’sthesis … Candidate of Science (Biology). Koltsovo; 2008. 17 p. (in Russ.)
27. Lvov D. K. Smallpox. In: Virology Manual: Viruses and viral infections in humans and animals. Ed. by D. K. Lvov. Moscow: Medical Informational Agency Publishers; 2013; 665–668. (in Russ.)
28. Khlusevich Ya. A. Gruppospetsificheskie virusneitralizuyushchie rekombinantnye antitela protiv immunodominantnogo belka p35 ortopoksvirusov: poluchenie i kharakterizatsiya = Group-specific virus-neutralizing recombinant antibodies against immunodominant protein p35 of orthopoxviruses: production and characterization: author’s thesis … Candidate of Science (Biology). Novosibirsk; 2019. 21 p. (in Russ.)
29. Poxviridae. In: ICTV 9th Report. 2012. Режим доступа: https://ictv.global/report_9th/dsDNA/poxviridae.
30. Vora N. M., Li Y., Geleishvili M., Emerson G. L., Khmaladze E., MaghlakelidzeG., et al. Human infection with a zoonotic orthopoxvirusin the country ofGeorgia. N. Engl. J. Med. 2015; 372 (13): 1223–1230. DOI:10.1056/NEJMoa1407647.
31. Springer Y. P., Hsu C. H., Werle Z. R., Olson L. E., Cooper M. P., Castrodale L. J., et al. Novel Orthopoxvirus infection in an Alaska resident. Clin. Infect. Dis. 2017; 64 (12): 1737–1741. DOI:10.1093/cid/cix219.
32. Lanave G., Dowgier G., Decaro N., Albanese F., Brogi E., Parisi A., et al. Novel Orthopoxvirus and lethal disease in cat, Italy. Emerg. Infect. Dis. 2018; 24 (9): 1665–1673. DOI:10.3201/eid2409.171283.
33. Onishchenko G. G., Kirillov I. A., Makhlai A. A., Borisevich S. V. Ortopoxviruses: past, present and future. Annals of the Russian Academy of Medical Sciences. 2020; 75 (4): 300–305. DOI:10.15690/vramn1363. (in Russ.)
34. Noyce R. S., Lederman S., Evans D. H. Construction of an infectious horsepox virus vaccine from chemically synthesized DNA fragments. PLoS One. 2018; 13(1):e0188453. DOI:10.1371/journal.pone.0188453.
35. Mohamed M. R., Rahman M. M., Lanchbury J. S., Shattuck D., Neff C., Dufford M., et al. Proteomic screening of variola virus reveals a unique NF-kappaB inhibitorthatis highly conserved among pathogenic orthopoxviruses. Proc. Natl. Acad. Sci. USA. 2009; 106 (22): 9045–9050. DOI:10.1073/pnas.0900452106.
36. WHO. The Independent Advisory Group on Public Health Implications of Synthetic Biology Technology Related to Smallpox, June 2015: Meeting report. Режим доступа: https://www.who.int/publications/i/item/the-independent-advisory-group-on-public-health-implications-of-synthetic-biology-technology-related-to-smallpox.
37. Shchelkunov S. N., Blinov V. M., Totmenin A. V., Marennikova S. S., Kolykhalov A. A., Frolov I. V., et al. Study ofthe structural-functional organization ofthe natural variola virus genome. I. Cloning HindIII- and XhoI-fragments of viral DNA and sequencing HindIII-M, -L, -I fragments. Molecular Biology. 1992; 26 (5): 1099–1115. (in Russ.)
38. Shchelkunov S. N., Marennikova S. S., Blinov V. M., Resenchuk S. M., Totmenin A. V., Chizhikov V. E., et al. Polnaja kodirujushhaja posledovatel’nost’ genoma virusa natural’noj ospy = Complete coding sequence of smallpox virus genome. Dokladу RAN. 1993; 328 (5): 629–632. (in Russ.)
39. Coetzer J. A. W. Poxviridae. In: Infectious Diseases of Livestock. Eds. J. A. W. Coetzer, R. C. Tustin. 2nd ed. Vol. 2. Cape Town: Oxford University Press; 2004; 1265–1267.
40. Shchelkunov S. N., Resenchuk S. M., Totmenin A. V., Blinov V. M., Marennikova S. S., Sandakhchiev L. S. Comparison of the genetic maps of variola and vaccinia viruses. FEBS Lett. 1993; 327 (3): 321–324. DOI:10.1016/0014-5793(93)81013-p.
41. Babkin I. V., NepomnyashchikhT. S., Maksyutov R. A., Gutorov V. V., Babkina I. N., Shchelkunov S. N. Comparative analysis of variable regions in the genomes of variola virus strains. Molecular Biology. 2008; 42 (4): 612–624. eLIBRARY ID:11031976. (in Russ.)
42. Babkina I. N., Babkin I. V., Le U., Ropp S., Kline R., Damon I., et al. Phylogenetic comparison ofthe genomes of differentstrains of variola virus. Doklady Biochemistry and Biophysics. 2004; 398 (6): 818–822. eLIBRARY ID:17371847. (in Russ.)
43. Maksyutov R. A. Live antivariolic vaccines. Problems of Particularly Dangerous Infections. 2017; (2): 72–77. DOI:10.21055/0370-1069-2017-2-72-77. (in Russ.)
44. Marennikova S. S., Shchelkunov S. N. Human pathogenic orthopoxviruses. Moscow: KMK Scientific Press Ltd.; 1998. 386 p. (in Russ.)
45. Pichugina T. Vozvrashchenie smertonosnogo virusa. Uchenye otsenili risk novoi pandemii = Deadly virus’ comeback. Scientists estimated new pandemic risk. RIA Novosti. Available at: https://ria.ru/20210804/ospa-1744160177.html. (in Russ.)
46. Kolosova I. V. Mutanty virusa ospy korov s deletsiyami genov BBK-semeistva = Cowpox viral BBK-gene deletion mutants: author’s thesis … Candidate of Science (Biology). Koltsovo; 2011. 35 p. (in Russ.)
47. Akimov D. Yu., Makarova M. N., Akimova M. A., Bondareva E. D., Khan S. O. Riskbased approach to the health monitoring of primates. LaboratoryAnimalsfor Science. 2021; 2: 69–82. DOI:10.29296/2618723X-2021-02-0. (in Russ.)
48. Borzdova I. Yu. Smallpox. Available at: https://snipchi.ru/updoc/2020/%D0%94%D0%BE%D0%BF%20%D0%BE%D0%B1%D1%80%D0%B0%D0%B7%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5/4_8_B.pdf (date of access: 22.06.2022). (in Russ.)
49. Lapin B. A., Dzhikidze E. K., Krylova R. I., Stasilevich Z. K., Yakovleva L. A. Problems of Infectious Pathology of Monkeys. Moscow: RAMN; 2004. 136 p. (in Russ.)
50. Simian diseases dangerous for humans. Rules for keeping and handling monkeysin quarantine upon receipt of animalsfrom externalsources, as well as during experimental infection: methodical guidelines МG 1.3.0012/1-13. Available at: https://files.stroyinf.ru/Data2/1/4293772/4293772403.pdf. (in Russ.)
51. Lapin B. A., Yakovleva L. A. Essays of comparative pathology of monkeys. Мoscow: Medgiz; 1960. 303 p. (in Russ.)
52. Jezek Z., Grab B., Paluku K. M., Szczeniowski M. V. Human monkeypox: disease pattern, incidence and attack ratesin a rural area of northern Zaire. Trop. Geogr. Med. 1988; 40 (2): 73–83. PMID:2841783.
53. Jezek Z., Khodakevich L. N., Szczeniowski M. V. Obez'ian'ia ospa cheloveka: kliniko-épidemiologicheskaia kharakteristika = Human monkey pox: its clinicoepidemiological characteristics. Zh. Mikrobiol. Epidemiol. Immunobiol. 1988; (6): 23–30. PMID:2845688. (in Russ.)
54. McCollum A. M., Damon I. K. Human monkeypox. Clin. Infect. Dis. 2014; 58 (2): 260–267. DOI:10.1093/cid/cit703.
55. Li Y., Zhao H., Wilkins K., Hughes C, Damon I. K. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J. Virol. Methods. 2010; 169 (1): 223–227. DOI:10.1016/j.jviromet.2010.07.012.
56. Damon I. K. Status of human monkeypox: clinical disease, epidemiology and research. Vaccine. 2011; 29 (4):D54-9. DOI:10.1016/j.vaccine.2011.04.014.
57. Durski K. N., McCollum A. M., NakazawaY., Petersen B. W., Reynolds M. G., Briand S., et al. Emergence of monkeypox – West and Central Africa, 1970-2017. MMWR Morb. Mortal. Wkly Rep. 2018; 67 (10): 306–310. DOI:10.15585/mmwr.mm6710a5.
58. Sklenovská N., Van Ranst M. Emergence of monkeypox as the most important orthopoxvirus infection in humans. Front. Public Health. 2018; 6:241. DOI:10.3389/fpubh.2018.00241.
59. Costello V., Sowash M., Gaur A., Cardis M., Pasieka H., Wortmann G., Ramdeen S. Imported monkeypox from international traveler, Maryland, USA, 2021. Emerg. Infect. Dis. 2022; 28 (5): 1002–1005. DOI:10.3201/eid2805.220292.
60. Cunha B. E. Monkeypox in the United States: an occupational health look at the first cases. AAOHN J. 2004; 52 (4): 164–168. PMID:15119816.
61. Ogoina D., Izibewule J. H., Ogunleye A., Ederiane E., Anebonam U., Neni A., et al. The 2017 human monkeypox outbreak in Nigeria – report of outbreak experience and response in the Niger Delta University Teaching Hospital, Bayelsa State, Nigeria. PLoSOne. 2019; 14 (4):e0214229. DOI:10.1371/journal.pone.0214229.
62. Alakunle E., Moens U., Nchinda G., Okeke M. I. Monkeypox virus in Nigeria: infection biology, epidemiology, and evolution. Viruses. 2020; 12 (11):1257. DOI:10.3390/v12111257.
63. Kulkova K. VOZ: chislo infitsirovannykh ospoi obez’yan v mire prevysilo 3,4 tysyachi = WHO: the number of monkeypox virus cases exceeded 3.4 thousand. JustMedia. Available at: https://www.justmedia.ru/news/russiaandworld/voz-chislo-infitsirovannykh-ospoy-obezyan-v-mire-prevysilo-34-tysyachi. (in Russ.)
64. Sergeev Al. A., Bulychev L. E., P’yankov O. V., Sergeev Ar. A., Bodnev S. A., Kabanov A. S., et al. Sensitivity of different animalspeciesto monkeypox virus. Problems of Particularly Dangerous Infections. 2012; 1 (111): 88–91. eLIBRARY ID:17425343. (in Russ.)
65. Hutson C. L., Carroll D. S., Self J., Weiss S., Hughes C. M., Braden Z., et al. Dosage comparison of Congo Basin and West African strains of monkeypox virus using a prairie dog animal model ofsystemic orthopoxvirus disease. Virology. 2010; 402 (1): 72–82. DOI:10.1016/j.virol.2010.03.012.
66. Sergeev Al. A. Stepnoi surok – model’nyi vid zhivotnykh dlya ospy obez’yan = Bobak marmotis monkeypox animal model: author’sthesis … Candidate of Science (Medicine). Koltsovo; 2015. 26 p. (in Russ.)
67. Yong S. E. F., Ng O. T., Ho Z. J. M., Mak T. M., Marimuthu K., Vasoo S., et al. Imported monkeypox, Singapore. Emerg. Infect. Dis. 2020; 26 (8): 1826–1830. DOI:10.3201/eid2608.191387.
68. Lvov D. K. Cowpox. In: Virology Manual: Viruses and viral infections in humans and animals. Ed. by D. K. Lvov. Moscow: Medical Informational Agency Publishers; 2013; 668–670. (in Russ.)
69. Pox vaccine virus. Cowpox virus. Monkeypox virus. MedUniver. Available at: https://meduniver.com/Medical/Microbiology/708.html. (in Russ.)
70. Vinogradov I. V. Morfologicheskie kharakteristiki infektsii, vyzyvaemoi shtammom EР-2 virusa ospy korov u kurinykh embrionov i myshei = Morphological characteristics of infection caused by EP-2 strain of cowpox virus in chicken embryos and mice: author’s thesis … Candidate of Science (Biology). Koltsovo; 2004. 18 р. (in Russ.)
71. Vinogradov I. V., Kochneva G. V., Malkova E. M., Shchelkunov S. N., Riabchikova E. I. An experimental infection caused by the EP-2 strain of cowpox virusin mice of different ages. Problems of Virology. 2003. 48 (5): 34–38. eLIBRARY ID:17038383. (in Russ.)
72. Riabchikova E. I., Vinogradov I. V., Timoshenko О. V., KochnevaG. V., Gus’kov A. A. Izuchenie osobennostei reproduktsii virusov ospy korov i natural’noi ospy in vitro i in ovo = Study of cowpox and smallpox virus reproduction in vitro and in ovo. Development ofinternational cooperation in the field ofinfectious disease study: abstracts ofthe International Conference. “Sosnovka”, NovosibirskOblast, September 8–10, 2004. Novosibirsk: TsERIS; 2004; 125. (in Russ.)
73. Kochneva G., Vinogradov I., Malkova E., Marennikova S., Ryabchikova E. Study of age-depend susceptibility of the mice to cowpox virus. Poster Session. XIIth International Congress of Virology. Paris; 2002; 460.
74. Eis-Hübinger A. M., Gerritzen A., Schneweis K. E., Pfeiff B., Pullmann H., Mayr A., Czerny C. P. Fatal cowpox-like virus infection transmitted by cat. Lancet. 1990; 336 (8719): 880. DOI:10.1016/0140-6736(90)92387-w.
75. Kurth A., Straube M., Kuczka A., Dunsche A. J., Meyer H., Nitsche A. Cowpox virus outbreak in banded mongooses (Mungosmungo) and jaguarundis (Herpailurus yagouaroundi) with a time-delayed infection to humans. PLoSOne. 2009; 4 (9):e6883. DOI:10.1371/journal.pone.0006883.
76. Lvov S. D., Gromashevskii V. L., Marennikova S. S., et al. Izolyatsiya poksvirusa (Poxviridae, Poxvirus, kompleks ospy korov) ot polevki-ekonomki Microtus (M.) oeconomus Pall. 1778 v lesotundre Kol’skogo poluostrova = Isolation of poxvirus (Poxviridae, Poxvirus, the cowpox complex) from the root vole Microtus (M.) oeconomus Pall., 1778 in the forest-tundra of the Kola Peninsula. Problems of Virology. 1978; 23 (1): 92–94. (in Russ.)
77. Tsanava Sh. A., Marennikova S. S., Sakvarelidze M. A. et al. Vydelenie virusa ospy korov ot krasnokhvostoi peschanki = Isolation of cowpox virus from the red tailed gerbil. Problems of Virology. 1989; 34 (1): 95–97. (in Russ.)
78. Chantrey J., Meyer H., Baxby D., Begon M., Bown K.J., Hazel S. M., et al. Cowpox: reservoir hosts and geographic range. Epidemiol. Infect. 1999; 122 (3): 455–460. DOI:10.1017/s0950268899002423.
79. Marennikova S. S., Shelukhina E. M. White rats as source of pox infection in carnivora of the family Felidae. Acta Virol. 1976; 20 (5): 442. PMID:11675.
80. Coras B., Essbauer S., Pfeffer M., Meyer H., Schröder J., Stolz W., et al. Cowpox and a cat. Lancet. 2005; 365 (9457): 446. DOI:10.1016/S0140-6736(05)17836-2.
81. CardetiG., BrozziA., EleniC., PoliciN., D’AlterioG., Carletti F., et al. Cowpox virus inllama, Italy. Emerg. Infect. Dis. 2011; 17 (8): 1513–1515. DOI:10.3201/eid1708.101912.
82. Kapil S., YearyT., Evermann J. F. Viral diseases of new world camelids. Vet. Clin. North Am. Food Anim. Pract. 2009; 25 (2): 323–337. DOI:10.1016/j.cvfa.2009.03.005.
83. Potel K., Voigt A., Hiepe T., Kronberger H., Heider G., et al. Eine bösartige Hautund Schleimhauterkrankung bei Elefanten. Der Zoologische Garten. 1963; 27: 1–103.
84. Martina B. E., van Doornum G., Dorrestein G. M., Niesters H. G., Stittelaar K. J., Wolters M. A., et al. Cowpox virus transmission from rats to monkeys, the Netherlands. Emerg. Infect. Dis. 2006; 12 (6): 1005–1007. DOI:10.3201/eid1206.051513.
85. Syurin V. N., Samuilenko A. Ya., Solov’ev B. V, Fomina N. V. Poxvirus infections. In: Viral animal diseases. Moscow: VNITIBP; 2001; 722–769. (in Russ.)
86. Оспа коров. Ветеринарная служба Владимирской области. Режим доступа: https://vetvo.ru/ospa-korov.html.
87. Vorou R. M., PapavassiliouV. G., PierroutsakosI. N. Cowpox virusinfection: an emerging health threat. Curr. Opin. Infect. Dis. 2008; 21 (2): 153–156. DOI:10.1097/QCO.0b013e3282f44c74.
88. Edward Jenner. Biographe. Available at: https://biographe.ru/uchenie/edvard-gener. (in Russ.)
89. Karmakar A., Saha G. R. Localised form of pox infection amongst buffaloes in West Bengal (India). Indian J. Animal Health. 1989; 28 (1): 85–87.
90. GhoshT. K., Arora R., Sehgal C. L., Ray S., Wattal B. L. An investigation of buffalopox outbreak in animals and human beingsin Dhulia District (Maharashtra State). 2. Epidemiological studies. The Journal of Communicable Diseases. 1977; 9: 93–101.
91. Rani N. L., Manda Srinivas, Chand K. P., Aruna P. Buffalo pox as a zoonotic disease. Intas Polivet. 2006; 7 (2): 352–353. Режим доступа: https://www.cabi.org/isc/abstract/20073017456.
92. VenkatesanG., BalamuruganV., Prabhu M., Yogisharadhya R., BoraD. P., Gandhale P. N., et al. Emerging andre-emerging zoonoticbuffalopox infection: a severe outbreak inKolhapur (Maharashtra), India. Vet. Ital. 2010; 46 (4): 439–448. PMID:21120799.
93. Mahmood M. A., Shah M. A. Out-breaks of pox like disease in buffaloes. Pakistan Vet. J. 1985; 5 (2): 94–95.
94. Yadav S., Hosamani M., Balamurugan V., Bhanuprakash V., Singh R. K. Partial genetic characterization of viruses isolated from pox-like infection in cattle and buffaloes: evidence of buffalo poxvirus circulation in Indian cows. Arch. Virol. 2010; 155 (2): 255–261. DOI:10.1007/s00705-009-0562-y.
95. Camelpox. In: WOAH. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2022; Chapter 3.5.1. Режим доступа: https://www.woah.org/en/what-wedo/standards/codes-and-manuals/terrestrial-manual-online-access.
96. Mayer A., Czerny C. P., Mayr P. A., Czerny C.-P. Camelpox virus. In: Virus Infections of Ruminants. VirusInfections of Vertebrates Series. Ed. by Z. Dinter, B. Morein. Chapter 4. Elsevier; 1990; 19–22. DOI:10.1016/B978-0-444-87312-5.50012-6.
97. Wernery U., Meyer H., Pfeffer M. Camel pox in the United Arab Emirates and its prevention. Journal of Camel Practice and Research. 1997; 4 (2): 135–139.
98. Wernery U., KaadenO. R. Camel pox. In: InfectiousDiseasesin Camelids, 2nd ed. Ed. by U. Wernery, O. R. Kaaden. Vienna: Blackwell Science Berlin; 2002; 176–185.
99. Davies F. G., MungaiJ. N., ShawT. Characteristics of a Kenyan camelpox virus. J. Hyg. (Lond). 1975; 75 (3): 381–385. DOI:10.1017/s002217240002444x.
100. Tantawi H. H., Saban M. S., Reda I. M., Dahaby H. E. Camel pox virus in Egypt. I-isolation and characterization. Bull. Epizoot. Dis. Afr. 1974; 22 (4): 315–319. PMID:4378004.
101. Kinne J., CooperJ. E., Wernery U. Pathologicalstudies on camelpox lesions of the respiratory system in the United Arab Emirates (UAE). J. Comp. Pathol. 1998; 118 (4): 257–266. DOI:10.1016/s0021-9975(07)80002-8.
102. Kriz B. A study of camelpox in Somalia. J. Comp. Pathol. 1982; 92 (1): 1–8. DOI:10.1016/0021-9975(82)90037-8.
103. Pfeffer M., Neubauer H., Wernery U., Kaaden O. R., Meyer H. Fatal form of camelpox virus infection. Vet. J. 1998; 155 (1): 107–109. DOI:10.1016/s10900233(98)80045-2.
104. Wernery U., Zachariah R. Experimental camelpox infection in vaccinated and unvaccinated dromedaries. Zentralbl. Veterinarmed. B. 1999; 46 (2): 131–135. DOI:10.1111/j.0931-1793.1999.00250.x.
Review
For citations:
Gruzdev K.N. Monkeypox and other orthopoxvirus zoonoses. Veterinary Science Today. 2022;11(3):194-202. https://doi.org/10.29326/2304-196X-2022-11-3-194-202