Flow cytometry sorting of cells infected with African swine fever virus
https://doi.org/10.29326/2304-196X-2022-11-2-114-120
Abstract
The African swine fever panzootic is continuing to spread, and the number of affected countries and material losses are increasing. In particular, India, Papua New Guinea, Malaysia, Greece and Bhutan joined the list of ASF infected countries in 2020–2021. The disease control is hindered by the lack of commercially available and effective vaccines, which, in its turn, is attributable to the insufficient knowledge of ASF pathogenesis and immune defense against the disease. The use of attenuated virus variants enables a thorough investigation of the factors influencing the virulence of African swine fever virus and the immune response to it. This involves the use of naturally attenuated virus variants, as well as of the variants attenuated by a long-term passaging of the virus in cell cultures. However, virulence heterogeneity characteristic of the ASF virus population, necessitates the additional selection of infected cells for the virus cloning. Conventional culture-based techniques for virus particle cloning are rather time- and labour-consuming; it is therefore appropriate to use flow cytometry cell sorting for the selection and cloning of virus infected cells with a view of selecting homologous virus lineages. The paper presents the results of sorting of African green monkey kidney cells (CV-1) and porcine bone marrow cells infected with African swine fever virus; the cells were sorted into the 96-well culture plates using a MoFlo Astrios EQ cell sorter in order to isolate a population of the virus originating from one infected cell. After the single cell sorting of the infected cell cultures into the 96-well plates, ASF positive cell detection rates in the plate wells were 30% for porcine bone marrow cells and 20% for CV-1.
About the Authors
A. S. PershinRussian Federation
Andrey S. Pershin - Candidate of Science (Veterinary Medicine), Senior Researcher, Reference Laboratory for African Swine Fever, ARRIAH.
Vladimir.
I. V. Shevchenko
Russian Federation
Ivan V. Shevchenko - Candidate of Science (Biology), Senior Researcher, Reference Laboratory for African Swine Fever, ARRIAH.
Vladimir.
T. N. Komova
Russian Federation
Tatiana N. Komova - Post-Graduate Student, Researcher, Reference Laboratory for African Swine Fever, ARRIAH.
Vladimir.
A. Mazloum
Russian Federation
Ali Mazloum - Candidate of Science (Biology), Researcher, Reference Laboratory for African Swine Fever, ARRIAH.
Vladimir.
N. N. Vlasova
Russian Federation
Natalia N. Vlasova - Doctor of Science (Biology), Chief Researcher, Reference Laboratory for African Swine Fever, ARRIAH.
Vladimir.
E. O. Morozova
Russian Federation
Elizaveta O. Morozova - Post-Graduate Student, Researcher, Reference Laboratory for African Swine Fever, ARRIAH.
Vladimir.
A. S. Igolkin
Russian Federation
Alexey S. Igolkin - Candidate of Science (Veterinary Medicine), Head of Reference Laboratory for African Swine Fever, ARRIAH.
600901, Vladimir, Yur’evets.
K. N. Gruzdev
Russian Federation
Konstantin N. Gruzdev - Doctor of Science (Biology), Professor, Chief Researcher, Information and Analysis Centre, ARRIAH.
Vladimir.
References
1. Remyga S. G., Pershin A. S., Shevchenko I. V., Igolkin A. S., Shevtsov A. A. Clinical and post-mortem signs in European wild boars and domestic pigs infected with African swine fever virus. Veterinary Science Today. 2016; (3): 46–51. (in Russ.)
2. Shevchenko I. V., Remyga S. G., Pershin A. S., et al. Kliniko-anatomicheskoe proyavlenie afrikanskoi chumy svinei pri zarazhenii raznymi metodami virusom, vydelennym ot dikogo kabana = Clinical and anatomical manifestations of African swine fever as a result of using various methods of infection with the virus isolated from a wild boar. Sovremennye problemy patologicheskoianatomii, patogeneza i diagnostiki boleznei zhivotnykh: materialy 18-j Mezhdunarodnoi nauchno-metodicheskoi konferentsii po patologicheskoi anatomii zhivotnykh (20–25 oktyabrya 2014 g.) =Current issues of anatomical pathology, pathogenesis and diagnosis of animal diseases: proceedings of the 18th International Scientific and Methodical Conference on Animal Anatomical Pathology (20–25 October 2014). Moscow: Moscow SAVMB, 2014; 82–84. (in Russ.)
3. Schoder M. E., Tignon M., Linden A., Vervaeke M., Cay A. B. Evaluation of seven commercial African swine fever virus detection kits and three Taq polymerases on 300 well-characterized field samples. J. Virol. Methods. 2020; 280:113874. DOI: 10.1016/j.jviromet.2020.113874.
4. European Food Safety Authority (EFSA), Desmecht D., Gerbier G., Gortázar Schmidt C., Grigaliuniene V., Helyes G., et al. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA J. 2021; 19 (5):e06572. DOI: 10.2903/j.efsa.2021.6572.
5. Zhu J. J., Ramanathan P., Bishop E. A., O’Donnell V., Gladue D. P., Borca M. V. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS One. 2019; 14 (11):e0223955. DOI: 10.1371/journal.pone.0223955.
6. Teklue T., Sun Y., Abid M., Luo Y., Qiu H. J. Current status and evolving approaches to African swine fever vaccine development. Transbound. Emerg. Dis. 2020; 67 (2): 529–542. DOI: 10.1111/tbed.13364.
7. Pikalo J., Zani L., Hühr J., Beer M., Blome S. Pathogenesis of African swine fever in domestic pigs and European wild boar – Lessons learned from recent animal trials. Virus Res. 2019; 271:197614. DOI: 10.1016/j.virusres.2019.04.001.
8. Borca M. V., Carrillo C., Zsak L., Laegreid W. W., Kutish G. F., Neilan J. G., et al. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J. Virol. 1998; 72 (4): 2881–2889. DOI: 10.1128/JVI.72.4.2881-2889.1998.
9. Shields C. W. IV, Reyes C. D., López G. P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 2015; 15 (5): 1230–1249. DOI: 10.1039/c4lc01246a.
10. Lacasta A., Monteagudo P. L., Jiménez-Marín Á., Accensi F., Ballester M., Argilaguet J., et al. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Vet. Res. 2015; 46:135. DOI: 10.1186/s13567-015-0275-z.
11. Pershin A., Shevchenko I., Igolkin A., Zhukov I., Mazloum A., Aronova E., et al. Long-term study of the biological properties of ASF virus isolates originating from various regions of the Russian Federation in 2013–2018. Vet. Sci. 2019; 6 (4):99. DOI: 10.3390/vetsci6040099.
12. Boinas F. S., Hutchings G. H., Dixon L. K., Wilkinson P. J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 2004; 85 (Pt 8): 2177–2187. DOI: 10.1099/vir.0.80058-0.
13. Oļševskis E., Schulz K., Staubach C., Seržants M., Lamberga K., Pūle D., et al. African swine fever in Latvian wild boar – A step closer to elimination. Transbound. Emerg. Dis. 2020; 67 (6): 2615–2629. DOI: 10.1111/tbed.13611.
14. Orfao A., Ruiz-Arguelles A. General concepts about cell sorting techniques. Clin. Biochem. 1996; 29 (1): 5–9. DOI: 10.1016/0009-9120(95)02017-9.
15. Liou Y. R., Wang Y. H., Lee C. Y., Li P. C. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles. PLoS One. 2015; 10 (5):e0125036. DOI: 10.1371/journal.pone.0125036.
16. Pereira H., Schulze P. S., Schüler L. M., Santos T. F., Barreira L., Varela J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Research. 2018; 30: 113–120. DOI: 10.1016/J.ALGAL.2017.12.013.
17. Sasagawa Y., Nikaido I., Hayashi T., Danno H., Uno K. D., Imai T., Ueda H. R. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 2013; 14 (4):R31. DOI: 10.1186/gb-2013-14-4-r31.
18. Liao X., Makris M., Luo X. M. Fluorescence-activated cell sorting for purification of plasmacytoid dendritic cells from the mouse bone marrow. J. Vis. Exp. 2016; 117:e54641. DOI: 10.3791/54641.
19. Ender F., Zamzow P., Bubnoff N. V., Gieseler F. Detection and quantification of extracellular vesicles via FACS: Membrane labeling matters! Int. J. Mol. Sci. 2019; 21 (1):291. DOI: 10.3390/ijms21010291.
20. Schierer S., Ostalecki C., Zinser E., Lamprecht R., Plosnita B., Stich L., et al. Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Sci. Alliance. 2018; 1 (6):e201800093. DOI: 10.26508/lsa.201800093.
21. Lippé R. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 2018; 92 (3):e01765-17. DOI: 10.1128/JVI.01765-17.
22. Shehadul Islam M., Aryasomayajula A., Selvaganapathy P. R. A review on macroscale and microscale cell lysis methods. Micromachines. 2017; 8 (3):83. DOI: 10.3390/mi8030083.
23. Galindo I., Alonso C. African swine fever virus: A review. Viruses. 2017; 9 (5):103. DOI: 10.3390/v9050103.
24. Vlasova N. N., Zhukov I. Yu., Mazlum Ali, Sharypova D. V., Pershin A. S., Igolkin A. S. ACHS/VNIIZZH/CV-1 strain of African swine fever, with decreased virulence for pigs, for virologic, diagnostic, molecular-genetic and surveillance studies. Patent No. 2675535 Russian Federation, Int. Cl. C12N 7/00 (2006.01). FGBI“ARRIAH”. Application: 2018117990. Application published: 15.05.2018. Date of publication: 19.12.2018. Bull. No. 35. Available at: https://patentimages.storage.googleapis.com/9b/54/86/bad913ad3ea42a/RU2675535C1.pdf. (in Russ.)
25. Mazlum Ali, Sharypova D. V., Gavrilova V. L., Puzankova О. S., Zhukov I. Yu., Aronova E. V., et al. Metodicheskie rekomendatsii po vydeleniyu i titrovaniyu virusa afrikanskoi chumy svinei v kul’ture kletok selezenki svinei = Methodical guidelines for the isolation and titration of African swine fever virus in porcine spleen cell culture: approved on 15.03.2019 No. 09-19. Vladimir: FGBI “ARRIAH”; 2019. 24 p. (in Russ.)
Review
For citations:
Pershin A.S., Shevchenko I.V., Komova T.N., Mazloum A., Vlasova N.N., Morozova E.O., Igolkin A.S., Gruzdev K.N. Flow cytometry sorting of cells infected with African swine fever virus. Veterinary Science Today. 2022;11(2):114-120. https://doi.org/10.29326/2304-196X-2022-11-2-114-120