Preview

Veterinary Science Today

Advanced search

Flow cytometry sorting of cells infected with African swine fever virus

https://doi.org/10.29326/2304-196X-2022-11-2-114-120

Abstract

The African swine fever panzootic  is continuing  to spread,  and the number  of affected countries and material losses are increasing. In particular, India, Papua New Guinea, Malaysia, Greece and Bhutan joined the list of ASF infected countries in 2020–2021. The disease control is hindered  by the lack of commercially available and effective vaccines, which, in its turn, is attributable  to the insufficient knowledge of ASF pathogenesis  and immune defense against the disease. The use of attenuated virus variants enables a thorough  investigation of the factors influencing the virulence of African swine fever virus and the immune  response  to it. This involves the use of naturally attenuated virus variants, as well as of the variants attenuated by a long-term passaging of the virus in cell cultures. However, virulence heterogeneity characteristic of the ASF virus population, necessitates  the additional selection of infected cells for the virus cloning. Conventional culture-based techniques for virus particle cloning are rather time- and labour-consuming;  it is therefore appropriate  to use flow cytometry cell sorting for the selection and cloning of virus infected cells with a view of selecting  homologous  virus lineages.  The paper  presents  the results of sorting  of African green  monkey kidney cells (CV-1) and porcine bone marrow cells infected with African swine fever virus; the cells were sorted into the 96-well culture plates using a MoFlo  Astrios   EQ cell sorter in order to isolate a population of the virus originating from one infected cell. After the single cell sorting of the infected cell cultures into the 96-well plates, ASF positive cell detection  rates in the plate wells were 30% for porcine bone marrow cells and 20% for CV-1.

About the Authors

A. S. Pershin
Federal Centre for Animal Health
Russian Federation

Andrey S. Pershin - Candidate of Science (Veterinary Medicine), Senior Researcher, Reference Laboratory for African Swine Fever, ARRIAH.

Vladimir.



I. V. Shevchenko
Federal Centre for Animal Health
Russian Federation

Ivan V. Shevchenko - Candidate  of Science  (Biology), Senior Researcher,  Reference  Laboratory  for  African  Swine  Fever, ARRIAH.

Vladimir.



T. N. Komova
Federal Centre for Animal Health
Russian Federation

Tatiana N. Komova - Post-Graduate  Student,  Researcher, Reference Laboratory  for African Swine Fever, ARRIAH.

Vladimir.



A. Mazloum
Federal Centre for Animal Health
Russian Federation

Ali Mazloum - Candidate  of  Science  (Biology),  Researcher, Reference Laboratory  for African Swine Fever, ARRIAH.

Vladimir.



N. N. Vlasova
Federal Centre for Animal Health
Russian Federation

Natalia N. Vlasova - Doctor of Science (Biology), Chief Researcher, Reference Laboratory  for African Swine Fever, ARRIAH.

Vladimir.



E. O. Morozova
Federal Centre for Animal Health
Russian Federation

Elizaveta O. Morozova - Post-Graduate  Student,  Researcher, Reference Laboratory  for African Swine Fever, ARRIAH.

Vladimir.



A. S. Igolkin
Federal Centre for Animal Health
Russian Federation

Alexey S. Igolkin - Candidate of Science (Veterinary Medicine), Head of Reference Laboratory for African Swine Fever, ARRIAH.

600901, Vladimir, Yur’evets.



K. N. Gruzdev
Federal Centre for Animal Health
Russian Federation

Konstantin N. Gruzdev - Doctor of Science (Biology), Professor, Chief Researcher, Information and Analysis Centre, ARRIAH.

Vladimir.



References

1. Remyga S. G., Pershin A. S., Shevchenko I. V., Igolkin A. S., Shevtsov A. A. Clinical and post-mortem signs in European wild boars and domestic pigs infected with African swine fever virus. Veterinary Science Today. 2016; (3): 46–51. (in Russ.)

2. Shevchenko I. V., Remyga S. G., Pershin A. S., et al. Kliniko-anatomicheskoe proyavlenie afrikanskoi chumy svinei pri zarazhenii raznymi metodami virusom, vydelennym ot dikogo kabana = Clinical and anatomical manifestations of African swine fever as a result of using various methods of infection with the virus isolated from a wild boar. Sovremennye problemy patologicheskoianatomii, patogeneza i diagnostiki boleznei zhivotnykh: materialy 18-j Mezhdunarodnoi nauchno-metodicheskoi konferentsii po patologicheskoi anatomii zhivotnykh (20–25 oktyabrya 2014 g.) =Current issues of anatomical pathology, pathogenesis and diagnosis of animal diseases: proceedings of the 18th International Scientific and Methodical Conference on Animal Anatomical Pathology (20–25 October 2014). Moscow: Moscow SAVMB, 2014; 82–84. (in Russ.)

3. Schoder M. E., Tignon M., Linden A., Vervaeke M., Cay A. B. Evaluation of seven commercial African swine fever virus detection kits and three Taq polymerases on 300 well-characterized field samples. J. Virol. Methods. 2020; 280:113874. DOI: 10.1016/j.jviromet.2020.113874.

4. European Food Safety Authority (EFSA), Desmecht D., Gerbier G., Gortázar Schmidt C., Grigaliuniene V., Helyes G., et al. Epidemiological analysis of African swine fever in the European Union (September 2019 to August 2020). EFSA J. 2021; 19 (5):e06572. DOI: 10.2903/j.efsa.2021.6572.

5. Zhu J. J., Ramanathan P., Bishop E. A., O’Donnell V., Gladue D. P., Borca M. V. Mechanisms of African swine fever virus pathogenesis and immune evasion inferred from gene expression changes in infected swine macrophages. PLoS One. 2019; 14 (11):e0223955. DOI: 10.1371/journal.pone.0223955.

6. Teklue T., Sun Y., Abid M., Luo Y., Qiu H. J. Current status and evolving approaches to African swine fever vaccine development. Transbound. Emerg. Dis. 2020; 67 (2): 529–542. DOI: 10.1111/tbed.13364.

7. Pikalo J., Zani L., Hühr J., Beer M., Blome S. Pathogenesis of African swine fever in domestic pigs and European wild boar – Lessons learned from recent animal trials. Virus Res. 2019; 271:197614. DOI: 10.1016/j.virusres.2019.04.001.

8. Borca M. V., Carrillo C., Zsak L., Laegreid W. W., Kutish G. F., Neilan J. G., et al. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J. Virol. 1998; 72 (4): 2881–2889. DOI: 10.1128/JVI.72.4.2881-2889.1998.

9. Shields C. W. IV, Reyes C. D., López G. P. Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip. 2015; 15 (5): 1230–1249. DOI: 10.1039/c4lc01246a.

10. Lacasta A., Monteagudo P. L., Jiménez-Marín Á., Accensi F., Ballester M., Argilaguet J., et al. Live attenuated African swine fever viruses as ideal tools to dissect the mechanisms involved in viral pathogenesis and immune protection. Vet. Res. 2015; 46:135. DOI: 10.1186/s13567-015-0275-z.

11. Pershin A., Shevchenko I., Igolkin A., Zhukov I., Mazloum A., Aronova E., et al. Long-term study of the biological properties of ASF virus isolates originating from various regions of the Russian Federation in 2013–2018. Vet. Sci. 2019; 6 (4):99. DOI: 10.3390/vetsci6040099.

12. Boinas F. S., Hutchings G. H., Dixon L. K., Wilkinson P. J. Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 2004; 85 (Pt 8): 2177–2187. DOI: 10.1099/vir.0.80058-0.

13. Oļševskis E., Schulz K., Staubach C., Seržants M., Lamberga K., Pūle D., et al. African swine fever in Latvian wild boar – A step closer to elimination. Transbound. Emerg. Dis. 2020; 67 (6): 2615–2629. DOI: 10.1111/tbed.13611.

14. Orfao A., Ruiz-Arguelles A. General concepts about cell sorting techniques. Clin. Biochem. 1996; 29 (1): 5–9. DOI: 10.1016/0009-9120(95)02017-9.

15. Liou Y. R., Wang Y. H., Lee C. Y., Li P. C. Buoyancy-activated cell sorting using targeted biotinylated albumin microbubbles. PLoS One. 2015; 10 (5):e0125036. DOI: 10.1371/journal.pone.0125036.

16. Pereira H., Schulze P. S., Schüler L. M., Santos T. F., Barreira L., Varela J. Fluorescence activated cell-sorting principles and applications in microalgal biotechnology. Algal Research. 2018; 30: 113–120. DOI: 10.1016/J.ALGAL.2017.12.013.

17. Sasagawa Y., Nikaido I., Hayashi T., Danno H., Uno K. D., Imai T., Ueda H. R. Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol. 2013; 14 (4):R31. DOI: 10.1186/gb-2013-14-4-r31.

18. Liao X., Makris M., Luo X. M. Fluorescence-activated cell sorting for purification of plasmacytoid dendritic cells from the mouse bone marrow. J. Vis. Exp. 2016; 117:e54641. DOI: 10.3791/54641.

19. Ender F., Zamzow P., Bubnoff N. V., Gieseler F. Detection and quantification of extracellular vesicles via FACS: Membrane labeling matters! Int. J. Mol. Sci. 2019; 21 (1):291. DOI: 10.3390/ijms21010291.

20. Schierer S., Ostalecki C., Zinser E., Lamprecht R., Plosnita B., Stich L., et al. Extracellular vesicles from mature dendritic cells (DC) differentiate monocytes into immature DC. Life Sci. Alliance. 2018; 1 (6):e201800093. DOI: 10.26508/lsa.201800093.

21. Lippé R. Flow virometry: a powerful tool to functionally characterize viruses. J. Virol. 2018; 92 (3):e01765-17. DOI: 10.1128/JVI.01765-17.

22. Shehadul Islam M., Aryasomayajula A., Selvaganapathy P. R. A review on macroscale and microscale cell lysis methods. Micromachines. 2017; 8 (3):83. DOI: 10.3390/mi8030083.

23. Galindo I., Alonso C. African swine fever virus: A review. Viruses. 2017; 9 (5):103. DOI: 10.3390/v9050103.

24. Vlasova N. N., Zhukov I. Yu., Mazlum Ali, Sharypova D. V., Pershin A. S., Igolkin A. S. ACHS/VNIIZZH/CV-1 strain of African swine fever, with decreased virulence for pigs, for virologic, diagnostic, molecular-genetic and surveillance studies. Patent No. 2675535 Russian Federation, Int. Cl. C12N 7/00 (2006.01). FGBI“ARRIAH”. Application: 2018117990. Application published: 15.05.2018. Date of publication: 19.12.2018. Bull. No. 35. Available at: https://patentimages.storage.googleapis.com/9b/54/86/bad913ad3ea42a/RU2675535C1.pdf. (in Russ.)

25. Mazlum Ali, Sharypova D. V., Gavrilova V. L., Puzankova О. S., Zhukov I. Yu., Aronova E. V., et al. Metodicheskie rekomendatsii po vydeleniyu i titrovaniyu virusa afrikanskoi chumy svinei v kul’ture kletok selezenki svinei = Methodical guidelines for the isolation and titration of African swine fever virus in porcine spleen cell culture: approved on 15.03.2019 No. 09-19. Vladimir: FGBI “ARRIAH”; 2019. 24 p. (in Russ.)


Review

For citations:


Pershin A.S., Shevchenko I.V., Komova T.N., Mazloum A., Vlasova N.N., Morozova E.O., Igolkin A.S., Gruzdev K.N. Flow cytometry sorting of cells infected with African swine fever virus. Veterinary Science Today. 2022;11(2):114-120. https://doi.org/10.29326/2304-196X-2022-11-2-114-120

Views: 3898


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)