Preview

Veterinary Science Today

Advanced search

Density of wild boar population and spread of African swine fever in the Russian Federation

https://doi.org/10.29326/2304-196X-2022-11-2-104-113

Abstract

African swine fever (ASF) is a transboundary viral disease affecting all species of the Suidae family. It greatly undermines global pig industry and causes a significant damage to the ecology of the wild boar (Sus scrofa) which is a natural reservoir of the virus and is an intermediate  link in the epizootic process. Depopulation of wild boars is one of the measures taken to prevent spread of African swine fever in the Russian Federation. A threshold density of the wild boar population of 0.25 boars/1000 ha (0.025 boars/km2), according to the National Plan on the ASF Eradication in the Russian Federation, was achieved by 2020 in many RF Subjects. However, further analysis of the ASF epizootic situation shows that the measure has failed to eradicate the infection completely. A regression analysis showed statistically significant positive relationship between recurrent ASF outbreaks in the wild boar population and its density in a number of model subjects (N = 6). At the same time, there is no such dependence in other model subjects (N = 3), and  ASF outbreaks were recorded in wild boars at a density significantly lower than the recommended value. A review of foreign and national scientific publications has shown that such control methods as depopulation is just one part of the whole set of measures taken to eradicate African swine fever in the wild. The measure  is effective only when 70–80%  of animals are culled in a short time, which is practically impossible due to the high costs and some peculiarities of the population control and depopulation  process. Based on the results obtained, it can be concluded that a decrease in the number of wild boars does not guarantee to stop further spread of infection in the Russian Federation and it should be considered as just one part of the whole set of measures taken together with other anti-epizootic measures to eliminate and prevent ASF.

About the Authors

O. I. Zakharova
Federal Research Center for Virology and Microbiology; Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Olga I. Zakharova - Researcher, Department of Epizootology and  Risk Assessment Associated with Animal Health, NNRVI – Branch of the FRCVM.

603950, Nizhny Novgorod, ul. Veterinarnaya, 3.



A. A. Blokhin
Federal Research Center for Virology and Microbiology; Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Andrey A. Blokhin - Candidate of Science (Veterinary Medicine), Leading Researcher, Head of Department of Epizootology and Risk Assessment Associated with Animal Health, NNRVI – Branch of the FRCVM.

Nizhny Novgorod.



N. N. Toropova
Federal Research Center for Virology and Microbiology; Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Nadezhda  N. Toropova - Microbiologyst,  Department   of Epizootology and Risk Assessment Associated with Animal Health, NNRVI – Branch of the FRCVM.

Nizhny Novgorod.



O. A. Burova
Federal Research Center for Virology and Microbiology; Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Olga A. Burova - Deputy Head of Department of Epizootology and Risk Assessment Associated with Animal Health, NNRVI – Branch of the FRCVM.

Nizhny Novgorod.



I. V. Yashin
Federal Research Center for Virology and Microbiology; Nizhny Novgorod Research Veterinary Institute – Branch of Federal Research Center for Virology and Microbiology
Russian Federation

Ivan V. Yashin - Candidate   of  Science  (Biology),  Leading Researcher, Department of Epizootology  and Risk Assessment Associated with Animal Health, NNRVI – Branch of the FRCVM.

Nizhny Novgorod.



F. I. Korennoy
Federal Centre for Animal Health
Russian Federation

Fedor I. Korennoy - Candidate of Science (Geography), Researcher, Information and Analysis Centre, FGBI “ARRIAH”.

Vladimir.



References

1. Balyshev V. M., Kurinnov V. V., Tsibanov S. G., Kalantaenko U. F., Kolbasov D. V., Pronin V. V., Korneva G. V. Biological characteristics of the African swine fever virus isolated in the Russian Federation. Veterinariya. 2010; 7: 25–27. eLIBRARY ID: 15110424. (in Russ.)

2. Gabriel C., Blome S., Malogolovkin A., Parilov S., Kolbasov D., Teifke J. P., Beer M. Characterization of African swine fever virus Caucasus isolate in European wild boars. Emerg. Infect. Dis. 2011; 17 (12): 2342–2345. DOI: 10.3201/eid1712.110430.

3. Jori F., Chenais E., Boinas F., Busauskas P., Dhollander S., Fleischmann L., et al. Application of the World Café method to discuss the efficiency of African swine fever control strategies in European wild boar (Sus scrofa) populations. Prev. Vet. Med. 2020; 185:105178. DOI: 10.1016/j.prevetmed.2020.105178.

4. Miller R. S., Farnsworth M. L., Malmberg J. L. Diseases at the live-stock-wildlife interface: status, challenges, and opportunities in the United States. Prev. Vet. Med. 2013; 110 (2): 119–132. DOI: 10.1016/j.prevetmed.2012.11.021.

5. Jori F., Relun A., Trabucco B., Charrier F., Maestrini O., Chavernac D., et al. Questionnaire-based assessment of wild boar/domestic pig interactions and implications for disease risk management in Corsica. Front. Vet. Sci. 2017; 4:198. DOI: 10.3389/fvets.2017.00198.

6. Guberti V., Khomenko S., Masiulis M., Kerba S. GF-TADs Handbook on African Swine Fever in wild boar and biosecurity during hunting. 2018. Available at: https://www.oie.int/fileadmin/Home/fr/Animal_Health_in_the_World/docs/pdf/ASF/GF-TADs_Handbook_ASF_WILDBOAR_version_2018-12-19.pdf.

7. Makarov V. V., Igolkin A. S., Boev B. V., Sukharev O. I., Rozhkov Yu. I., Varnakov A. P., Pronyaev A. V. Some elements in the current epidemic of African swine fever. The Herald of Game Management. 2015; 12 (1): 61–65. Available at: https://fsvps.gov.ru/fsvps-docs/ru/iac/asf/publications/makarov/asf_moment.pdf. (in Russ.)

8. Jori F., Bastos A. D. S. Role of wild suids in the epidemiology of African swine fever. EcoHealth. 2009; 6: 296–310. DOI: 10.1007/s10393-009-0248-7.

9. Pepin K. M., Golnar A. J., Abdo Z., Podgórski T. Ecological drivers of African swine fever virus persistence in wild boar populations: Insight for control. Ecol. Evol. 2020; 10 (6): 2846–2859. DOI: 10.1002/ece3.6100.

10. Halasa T., Boklunda A., Bøtner A., Mortensen S., Kjærab L. J. Simulation of transmission and persistence of African swine fever in wild boar in Denmark. Prev. Vet. Med. 2019; 167 (1): 68–79. DOI: 10.1016/j.prevetmed.2019.03.028.

11. Guberti V., Khomenko S., Masiulis M., Kerba S. African swine fever in wild boar ecology and biosecurity. FAO Animal Production and Health Manual No. 22. Rome: FAO, OIE and EC; 2019. DOI: 10.4060/CA5987EN.

12. Taylor R. A., Condoleo R., Simons R. R. L., Gale P., Kelly L. A., Snary E. L. The risk of infection by African swine fever virus in European swine through boar movement and legal trade of pigs and pig meat. Front. Vet. Sci. 2020; 6:486. DOI: 10.3389/fvets.2019.00486.

13. ENETWILD consortium, Keuling O., Sange M. D., Acevedo P., Podgórski T., Smith G. C., et al. Guidance on estimation of wild boar population abundance and density: methods, challenges, possibilities. EFSA Supporting Publications. 2018; 15 (7):1449E. DOI: 10.2903/sp.efsa.2018.EN-1449.

14. Bardina N. S., Petrova O. N., Sawin A. V. The role of wild boars in the ASF epidemic process in the Russian Federation. Veterinary Science Today. 2012; (1): 37–42. eLIBRARY ID: 22296397.

15. Podgórski T., Śmietanka K. Do wild boar movements drive the spread of African swine fever? Transbound. Emerg. Dis. 2018; 65 (6): 1588–1596. DOI: 10.1111/tbed.12910.

16. Makarov V. V., Vasilevich F. I., Boev B. V., Sukharev O. I. Natural focus of African swine fever. Moscow: Moscow SAVMB; RUDN; 2014. 66 p. Available at: https://fsvps.gov.ru/fsvps-docs/ru/news/asf/asf_makarov/makarov_ochag_asf.pdf. (in Russ.)

17. Chenais E., Depner K., Guberti V., Dietze K., Viltrop A., Ståhl K. Epidemiological considerations on African swine fever in Europe 2014–2018. Porc. Health Manag. 2019; 5:6. DOI: 10.1186/s40813-018-0109-2.

18. European Food Safety Authority (EFSA), Depner K., Gortazar C., Guberti V., Masiulis M., More S., et al. Epidemiological analyses of African swine fever in the Baltic States and Poland. EFSA J. 2017; 15 (11): e05068. DOI: 10.2903/j.efsa.2017.5068.

19. Gaudreault N. N., Madden D. W., Wilson W. C., Trujillo J. D., Richt J. A. African swine fever virus: An emerging DNA Arbovirus. Front. Vet. Sci. 2020; 7:215. DOI: 10.3389/fvets.2020.00215.

20. Bellini S., Casadei G., De Lorenzi G., Tamba M. A review of risk factors of African swine fever incursion in pig farming within the European Union scenario. Pathogens. 2021; 10 (1):84. DOI: 10.3390/pathogens10010084.

21. Podgórski T., Apollonio M., Keuling O. Contact rates in wild boar populations: Implications for disease transmission. J. Wild. Mgmt. 2018; 82 (6): 1210–1218. DOI: 10.1002/jwmg.21480.

22. Pejsak Z., Truszczyński M., Niemczuk K., Kozak E., Markowska-Daniel I. Epidemiology of African swine fever in Poland since the detection of the first case. Pol. J. Vet. Sci. 2014; 17 (4): 665–672. DOI: 10.2478/pjvs-2014-0097.

23. ENETWILD consortium, Acevedo P., Croft S., Smith G., Blanco-Aguiar A., Fernandez-Lopez J., et al. ENETwild modelling of wild boar distribution and abundance: update of occurrence and hunting data-based models. EFSA Supporting Publications. 2019; 16 (8):1674E. DOI: 10.2903/sp.efsa.2019.EN-1674.

24. EFSA Panel on Animal Health and Welfare (AHAW), More S., Miranda M. A., Bicout D., Bøtner A., Butterworth A., et al. African swine fever in wild boar. EFSA J. 2018; 16 (7):e05344. DOI: 10.2903/j.efsa.2018.5344.

25. Petrova O. N., Korennoy F. I., Karaulov A. K. Brief analysis of the spread of ASF on the territory of the Russian Federation for 2007–2018 taking into account the wild boar range. BIO. 2018; 8: 26–37. eLIBRARY ID: 37307660. (in Russ.).

26. Gervasi V., Marcon A., Bellini S., Guberti V. Evaluation of the efficiency of active and passive surveillance in the detection of African swine fever in wild boar. Vet. Sci. 2019; 7 (1):5. DOI: 10.3390/vetsci7010005.

27. Iglesias I., Muñoz M. J., Montes F., Perez A., Gogin A., Kolbasov D., de la Torre A. Reproductive ratio for the local spread of African swine fever in wild boars in the Russian Federation. Transbound. Emerg. Dis. 2016; 63 (6): e237–e245. DOI: 10.1111/tbed.12337.

28. Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021; 372:n71. DOI: 10.1136/bmj.n71.

29. Domínguez-Almendros S., Benítez-Parejo N., Gonzalez-Ramirez A. R. Logistic regression models. Allergol. Immunopathol. (Madr). 2011; 39 (5): 295–305. DOI: 10.1016/j.aller.2011.05.002.

30. Bangdiwala S. I. Regression: binary logistic. Int. J. Inj. Contr. Saf. Promot. 2018; 25 (3): 336–338. DOI: 10.1080/17457300.2018.1486503.

31. Zeileis A., Kleiber C., Jackman S. Regression models for count data in R. Journal of Statistical Software. 2008; 27 (8): 1–25. DOI: 10.18637/jss.v027.i08.

32. Oļševskis E., Schulz K., Staubach C., Seržants M., Lamberga K., Pūle D., et al. African swine fever in Latvian wild boar – A step closer to elimination. Transbound. Emerg. Dis. 2020; 67 (6): 2615–2629. DOI: 10.1111/tbed.13611.

33. Danilkin A. A. Management of wild boar and other animal resources in African swine fever Мoscow: Tovarishchestvo nauchnykh izdanii KMK; 2020. 150 p. Available at: http://www.journalhunt.com/img/file/kabanachs-kniga.pdf. (in Russ.)

34. European Food Safety Authority (EFSA), Nielsen S. S., Alvarez J., Bicout D. J., Calistri P., Depner K., et al. ASF exit strategy: Providing cumulative evidence of the absence of African swine fever virus circulation in wild boar populations using standard surveillance measures. EFSA J. 2021; 19 (3):e06419. DOI: 10.2903/j.efsa.2021.6419.

35. Lange M., Guberti V., Thulke H.-H. Understanding ASF spread and emergency control concepts in wild boar populations using individual-based modelling and spatio-temporal surveillance data. EFSA Supporting Publications. 2018; 15 (11):1521E. DOI: 10.2903/sp.efsa.2018.EN-1521.

36. Danzetta M. L., Marenzoni M. L., Iannetti S., Tizzani P., Calistri P., Feliziani F. African swine fever: Lessons to learn from past eradication experiences. A systematic review. Front. Vet. Sci. 2020; 7:296. DOI: 10.3389/fvets.2020.00296.

37. Zakharova O. I., Titov I. A., Gogin A. E., Sevskikh T. A., Korennoy F. I., Kolbasov D. V., et al. African swine fever in the Russian Far East (2019–2020): Spatio-temporal analysis and implications for wild ungulates. Front. Vet. Sci. 2021; 8:723081. DOI: 10.3389/fvets.2021.723081.

38. Schulz K., Staubach C., Blome S., Nurmoja I., Viltrop A., Conraths F. J., et al. How to demonstrate freedom from African swine fever in wild boar-Estonia as an example. Vaccines (Basel). 2020; 8 (2):336. DOI: 10.3390/vaccines8020336.

39. Korennoy F. I., Gulenkin V. M., Karaulov A. K. African swine fever in wild boar in the territory of the Russian Federation: on regulation of wild boar population. Actual Questions of Veterinary Biology. 2016; 1 (29): 29–37. Available at: http://www.invetbio.spb.ru/avvb/AVVB_2016_01.pdf. (in Russ.)

40. Nurmoja I., Schulz K., Staubach C., Sauter-Louis C., Depner K., Conraths F. J., Viltrop A. Development of African swine fever epidemic among wild boar in Estonia – two different areas in the epidemiological focus. Sci. Rep. 2017; 7 (1):12562. DOI: 10.1038/s41598-017-12952-w.

41. De Freitas Costa E., Schneider S., Carlotto G. B., Cabalheiro T., de Oliveira Júnior M. R. Zero-inflated-censored Weibull and gamma regression models to estimate wild boar population dispersal distance. Jpn. J. Stat. Data Sci. 2021; 4: 1133–1155. DOI: 10.1007/s42081-021-00124-0.


Review

For citations:


Zakharova O.I., Blokhin A.A., Toropova N.N., Burova O.A., Yashin I.V., Korennoy F.I. Density of wild boar population and spread of African swine fever in the Russian Federation. Veterinary Science Today. 2022;11(2):104-113. https://doi.org/10.29326/2304-196X-2022-11-2-104-113

Views: 724


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)