Review article: key aspects of mammal microbiome development
https://doi.org/10.29326/2304-196X-2021-1-36-68-71
Abstract
This review article summarizes current understanding of the microbiota development in neonatal mammals based on the results of modern experimental studies in animals focusing on three aspects: initial colonization, microbiota effect on the immune function of the developing newborn animal intestine and external factors influencing the microbiome shaping during the juvenile period. The presented study results confirm that the microbial landscape correction is the most important factor for animal health improvement since healthy microflora contributes to the intestinal infection frequency and intensity reduction, and this, in turn, minimizes the use of antibiotics. The microbiome is known to have an impact on the immune system development, metabolic processes and even on the ethology, so an atypical microbial population can cause immune and metabolic disorders. The active interaction between microorganisms and the host organism begins already at birth. Even different modes of delivery (caesarean or vaginal delivery) may determine the initial colonization of the newborn. The animal genetics, nutrition and environment also influence the intestinal microbiota development. In this regard, further studies of probiotics are important to understand their efficacy for diarrhea prevention and treatment, their use as an alternative to antibiotics as well as for enhancement of the animal resistance to stress factors.
About the Authors
E. V. SemenovaRussian Federation
Elena V. Semenova, Junior Researcher, Laboratory for the Diagnosis of Infectious and Invasive Diseases of the Scientific and Testing Center
Voronezh
O. A. Manzhurina
Russian Federation
Olga A. Manzhurina, Candidate of Science (Veterinary Medicine), Associate Professor, Head of the Laboratory for the Diagnosis of Infectious and Invasive Diseases of the Scientific and Testing Center
Voronezh
Yu. S. Parkhomenko
Russian Federation
Yuliya S. Parkhomenko, Junior Researcher, Laboratory for the Diagnosis of Infectious and Invasive Diseases of the Scientific and Testing Center
Voronezh
References
1. Abe F., Ishibashi N., Shimamura S. Effects of administration of bifidobacteria and lactic acid bacteria to newborn calves and piglets. J. Dairy Sci. 1995; 78 (12): 2838–2846. DOI: 10.3168/jds.S0022-0302(95)76914-4.
2. Shakhov A. G., Sashnina L. Yu., Lebedev M. I., Lebedeva Ye. V. Study of resistance of bacterial exciters of gastro-intestinal and respiratory diseases in piglets to antimicrobial preparations. Russian Agricultural Sciences. 2011; 2: 53–55. eLIBRARY ID: 15594622. (in Russian)
3. Manzhurina O. A., Skogoreva A. M., Romashov B. V., Romashova N. B. Modern trends in antibiotic resistance of the microbiota of domestic and wild animals. Vestnik VSAU. 2017; 1 (52): 41–45. DOI: 10.17238/issn2071-2243.2017.1.41. (in Russian)
4. Subbotin V. V. Study of the development of intestinal microbial population of weaned animals. Proceedings of the 1st Congress of Russian Veterinary Pharmacologists [Materialy Pervogo s”ezda veterinarnyh farmakologov Rossii]. 2007; 570-575. Available at: http://zoovet.info/vet-knigi/123-farmakologiya/veterinarnaya-farm/6716-stanovlenie-normalnogo-mikrobiotsenoza-v-postnatalnom-periode-u-domashnikh-zhivotnykh. (in Russian)
5. Sokol H., Pigneur B., Watterlot L., Lakhdari O., Bermudez-Humaran L. G., Gratadoux J. J., et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc.Natl. Acad. Sci. 2008; 105 (43): 16731–16736. DOI: 10.1073/pnas.0804812105.
6. Mazmanian S. K., Liu C. H., Tzianabos A. O., Kasper D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005; 122 (1): 107–118. DOI: 10.1016/j.cell.2005.05.007.
7. Sjögren Y. M., Tomicic S., Lundberg A., Böttcher M. F., Björkstén B., Sverremark-Ekström E., Jenmalm M. C. Influence of early gut microbiota on the maturation of childhood mucosal and systemic immune responses. Clin. Exp. Allergy. 2009; 39 (12): 1842–1851. DOI: 10.1111/j.1365-2222.2009.03326.x.
8. Macpherson A. J., Harris N. L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 2004; 4 (6): 478–485. DOI: 10.1038/nri1373.
9. Ismail I. H., Oppedisano F., Joseph S. J., Boyle R. J., Licciardi P. V., Robins-Browne R. M., Tang M. L. Reduced gut microbial diversity in early life is associated with later development of eczema but not atopy in high-risk infants. Pediatr. Allergy Immunol. 2012; 23 (7): 674–681. DOI: 10.1111/j.1399-3038.2012.01328.x.
10. Rutayisire E., Huang K., Liu Y., Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. 2016; 16 (1):86. DOI: 10.1186/s12876-016-0498-0.
11. Shakhov A. G., Sashina L. Yu., Fedosov D. V., Erina T. E., Alekhin Yu. N. Intestinal microbiosis in hypotrophic milk-fed calves. Agricultural Biology [Sel’skokhozyaistvennaya Biologiya]. 2014; 49 (2): 105–111. DOI: 10.15389/agrobiology.2014.2.105eng. (in Russian)
12. Motorygin A. V., Lenchenko E. M. Methods of determination of qualitative and quantitative composition of microorganisms during intestine dysbacteriosis in calves. Agricultural Biology [Sel’skokhozyaistvennaya Biologiya]. 2011; 46 (2): 103–107. eLIBRARY ID: 16220466. (in Russian)
13. Laursen M. F., Andersen L. B., Michaelsen K. F., Mølgaard C., Trolle E., Bahl M. I., Licht T. R. Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. mSphere. 2016; 1 (1):e00069-15. DOI: 10.1128/mSphere.00069-15.
14. Khachatryan Z. A., Ktsoyan Z. A., Manukyan G. P., Kelly D., Ghazaryan K. A., Aminov R. I. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One. 2008; 3 (8):e3064. DOI: 10.1371/journal.pone.0003064.
15. Zhou D., Zhang H., Bai Z., Zhang A., Bai F., Luo X., et al. Exposure to soil, house dust and decaying plants increases gut microbial diversity and decreases serum immunoglobulin E levels in BALB/c mice. Environ Microbiol. 2016; 18 (5): 1326–1337. DOI: 10.1111/1462-2920.12895.
16. Sudo N., Chida Y., Aiba Y., Sonoda J., Oyama N., Yu X. N., Kubo C., Koga Y. Postnatal microbial colonization programs the hypothalamicpituitary- adrenal system for stress response in mice. J. Physiol. 2004; 558 (Pt 1): 263–275. DOI: 10.1113/jphysiol.2004.063388.
17. Bercik P., Denou E., Collins J., Jackson W., Lu J., Jury J., et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology. 2011; 141 (2): 599–609. DOI: 10.1053/j.gastro.2011.04.052.
18. Vijay-Kumar M., Aitken J. D., Carvalho F. A., Cullender T. C., Mwangi S., Srinivasan S., et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science. 2010; 328 (5975): 228–231. DOI: 10.1126/science.1179721.
Review
For citations:
Semenova E.V., Manzhurina O.A., Parkhomenko Yu.S. Review article: key aspects of mammal microbiome development. Veterinary Science Today. 2021;1(1):68-71. https://doi.org/10.29326/2304-196X-2021-1-36-68-71