Visualization of microbial biofilms in case of digestive disorders in lambs
https://doi.org/10.29326/2304-196X-2021-1-36-59-67
Abstract
The paper demonstrates morphometric and densitometric parameters of microbial biofilms recovered from lambs with digestive disorders. Changes of quantitative and species composition of the intestinal microbiocenoses in the lambs with digestive disorders were compared with the ones of the clinically healthy lambs. Light microscopy results demonstrated formation of three-dimensional biofilm structure in the form of dense grid consisting of gram-negative and gram-positive bacteria, yeast cells, hyphas and pseudohyphas surrounded with intracellular polymer matrix. Presence of blastospores aided to the increased number of cells attached to the substrate, and biofilm was formed, which consisted of rod and round cells attached to the microfungi cells. In the process of dispersion that occurred during the destruction of the intercellular matrix and bacterial and yeast cell detachment, branched structures separated from the microcolonies and colonized microorganism- free regions of the substrate. The intensity of biofilm formation by the microorganisms under study was evaluated by optic density measurement in 48 hours of cultivation. Fluorescence microscopy results demonstrated that the dynamics of changes of the viable microbial structures was specified by intermittent periods of increased or decreased biofilm formation intensity. Cells characterized by active growth and replication and forming alternating subpopulations were detected in the examined microbial cultures. When determining the viability of the microorganisms in the biofilms, the viable (green fluorescence) and non-viable (red fluorescence) cells were differentiated.
Keywords
About the Authors
E. M. LenchenkoRussian Federation
Ekaterina M. Lenchenko, Doctor of Science (Veterinary Medicine), Professor, Department of Veterinary Medicine
Moscow
N. P. Sachivkina
Russian Federation
Nadezda P. Sachivkina, Candidate of Science (Biology), Associate Professor, Department of Microbiology and Virology, Medical Institute
Moscow
D. A. Blumenkrants
Russian Federation
Dmitry А. Blumenkrants, Post-Graduate Student, Department of Veterinary Medicine
Moscow
A. Yu. Arsenyuk
Russian Federation
Anna Yu. Arsenyuk, Candidate of Science (Biology), Senior Researcher, Department of Sanitary and Clinical Microbiology
Moscow
References
1. Dzhupina S. I. Epidemic process and its control in case of factor infectious diseases [Epizooticheskij process i ego kontrol’ pri faktornyh infekcionnyh boleznyah]. М.: RUDN University; 2002. 70 р. Available at: https://ru1lib.org/ireader/3083115. (in Russian)
2. Makarov V. V. Factor diseases. Russian Veterinary Journal. 2017; 4: 22–27. eLIBRARY ID: 29188056. (in Russian)
3. Pruntova O. V., Rusaleev V. S., Gnevashev V. M., Seliverstov V. V., Potekhin A. V., Kolotilova T. G. Antigenic activity of Salmonella choleraesuis and Pasteurella multocida in associated vaccine inactivated by ethylen imine dimer. Agricultural Biology [Sel’skokhozyaistvennaya biologiya]. 2003; 38 (6): 94–99. eLIBRARY ID: 18100818. (in Russian)
4. Gnezdilova L. A. Epidemic properties, diagnosis and prevention of mixed ovine infections involving reproductive malfunctions [Epizootologicheskaya harakteristika, diagnostika i profilaktika smeshannyh infekcij ovec s sindromom porazheniya reproduktivnyh organov]: Authors abstract Doctor of Science dissertation (Veterinary Medicine). М.; 2005. 32 p. Available at: https://dlib.rsl.ru/viewer/01003254498#?page=1. (in Russian)
5. Kjelstrup C. K., Barber A. E., Norton J. P., Mulvey M. A., L’Abée-Lund T. M. Escherichia coli O78 isolated from septicemic lambs shows high pathogenicity in a zebrafish model. Vet. Res. 2017; 48:3. DOI: 10.1186/s13567-016-0407-0.
6. Usachev I. I. Intestinal microbiocenosis, its evaluation and control in sheep, targeted formation in newborn lambs [Mikrobiocenoz kishechnika, ego ocenka i kontrol’ u ovec, celenapravlennoe formirovanie u novorozhdennyh yagnyat]: Authors abstract Doctor of Science dissertation (Veterinary Medicine). М.; 2014. 368 p. Available at: http://viev.ru/wordpress/
7. wp-content/uploads/2015/01/Dissertacija-Usachev-I-I.pdf. (in Russian)
8. Lenchenko E. M., Mansurova E. A., Motorygin A. V. Characterization of toxigenic Enterobacteriaceae from farm animals with gastrointestinal diseases. Agricultural Biology [Sel’skokhozyaistvennaya biologiya]. 2014; 49 (2): 94–104. DOI: 10.15389/agrobiology.2014.2.94eng.
9. Shamukova D. F., Yakovleva A. M., Sachivkina N. P. Morphology and differential diagnosis of the fungi Candida in dogs and cats. In: Innovation processes in agribusiness [Innovacionnye processy v APK]: Collection of the VI International Research-to-Practice Conference for lecturers, postgraduates and students. М.: RUDN University; 2014; 201–203. eLIBRARY ID: 24406937. (in Russian)
10. Pirozhkov M. K., Lenev S. V., Viktorova E. V., Strelchenko S. A., Tikhonov L. I., Scliarov O. D. Diagnosis, specific prophylaxis and treatment of bacterial diseases of animals. . Veterinariya. 2011; 1: 24–28. eLIBRARY ID: 15577882. (in Russian)
11. Kuryatova E. V., Gerasimova M. V., Tyukavkina O. N., Gavrilov Y. A., Gavrilova G. A. The etiology of the initiative of gastroenterites of the youth of agricultural animals in the conditions of the Amur Region. Far East Agrarian Bulletin. 2018; 1 (45): 60–66. DOI: 10.24411/1999-6837-2018-11010. (in Russian)
12. Sushma, Nehra V., Jakhar K. K. Aetio-pathological studies of digestive and respiratory affections in lambs. Pharma Innovation. 2018; 7 (5): 100–105. Available at: https://www.thepharmajournal.com/archives/2018/vol7issue5/PartB/7-4-112-798.pdf.
13. Lenchenko E. M. Biology and ecology of Yersinia – agent of alimentary toxicological infections [Biologiya i ekologiya iersinij – vozbuditelej pishchevyh toksikoinfekcij]: Authors abstract Doctor of Science dissertation (Veterinary Medicine). М.; 2000. 382 p. (in Russian)
14. Klemenov A. V., Martynov V. L., Torgushina N. S. Primary bauhin valvule insufficiency as visceral phenotypical marker of connective tissue dysplasia. Medical News of North Caucasus. 2008; 2: 83–86. eLIBRARY ID: 15287251. (in Russian)
15. Agarkov N. V. Macro- and micromorphology of coecum and its blood vessels in the North Caucasian sheep breed during postnatal ontogenesis [Makro- i mikromorfologiya slepoj kishki i ee krovenosnogo rusla ovec severokavkazskoj porody v postnatal’nom ontogeneze]: Authors abstract Candidate of Science thesis (Biology). Stavropol; 2018. 23 p. Available at: https://dlib.rsl.ru/viewer/01008708014#?page=1. (in Russian)
16. Pleshakova V. I., Kolotilo A. N., Lescheva N. A. Pathogenicity factors of microorganisms isolated from drinking water and biofilm technology elements water system of agricultural enterprises. Modern Problems of Science and Education. 2013; 1:476. eLIBRARY ID: 18829425. Available at: http://www.science-education.ru/ru/article/view?id=8337. (in Russian)
17. Sakhno N. V., Timokhin O. V., Sakhno O. N. Improving of the method for the cultivation of microorganisms. Theoretical and Applied Problems of Agro-Industry [Teoreticheskie i prikladnye problemy agropromyshlennogo kompleksa]. 2014; 1 (18): 45–47. eLIBRARY ID: 22369389. Available at: http://www.nitu.ru/tppapk/14_1.pdf. (in Russian)
18. Lerma L. L., Benomar N., Knapp C. W., Correa Galeote D., Gálvez A., Abriouel H. Diversity, distribution and quantification of antibiotic resistance genes in goat and lamb slaughterhouse surfaces and meat products. PLoS One. 2014; 9 (12):e114252. DOI: 10.1371/journal.pone.0114252.
19. Vuotto C., Longo F., Pascolini C., Donelli G., Balice M. P., Libori M. F., et al. Biofilm formation and antibiotic resistance in Klebsiella pneumoniae urinary strains. J. Appl. Microbiol. 2017; 123 (4): 1003–1018. DOI: 10.1111/jam.13533.
20. Pruntova O. V., Shadrova N. B. Modern methods for determination of microbiological spoilage of food products and raw food materials (analytical review). Veterinary Science Today. 2017; 2: 27–33. Available at: https://veterinary.arriah.ru/jour/article/view/300. (in Russian)
21. Ermolenko Z. M., Fursova N. K. Microbiological spoilage of food and promising approaches to combat the phenomenon. Bacteriology. 2018; 3 (3): 46–57. DOI: 10.20953/2500-1027-2018-3-46-57. (in Russian)
22. Lenchenko E. M. Morphofunctional properties and population variability of Yersinia affecting farm animals, depending on the temperature factor [Morfofunkcional’nye svojstva i populyacionnaya izmenchivost’ iersinij, porazhayushchih sel’skohozyajstvennyh zhivotnyh, v zavisimosti ot temperaturnogo faktora]. Agricultural Biology [Sel’skokhozyaistvennaya biologiya]. 1996; 6: 88–95. (in Russian)
23. Milko E. S., Krasilnikova E. N., Milko D. M. The value of heterogeneity of bacteria population, created by the process of dissociation, for the growth of purple photosynthetic bacteria in their natural habitat. Vestnik Moskovskogo universiteta. Seriya 16. Biologiya. 2016; 3: 55–59. Available at: https://vestnik-bio-msu.elpub.ru/jour/article/view/344/0. (in Russian)
24. Lenchenko E., Lozovoy D., Strizhakov A., Vatnikov Y., Byakhova V., Kulikov E., et al. Features of formation of Yersinia enterocolitica biofilms. Vet. World. 2019; 12 (1): 136–140. DOI: 10.14202/vetworld.2019.136-140.
25. Laffey S. F., Butler G. Phenotype switching affects biofilm formation by Candida parapsilosis. Microbiology (Reading). 2005; 151 (Pt 4): 1073–1081. DOI: 10.1099/mic.0.27739-0.
26. Aertsen A., Michiels C. W. Stress and how bacteria cope with death and survival. Crit. Rev. Microbiol. 2004; 30 (4): 263–273. DOI: 10.1080/10408410490884757.
27. Pakhomov Yu. D. Production, detection and description of non-cultivated bacterial cells [Poluchenie, detekciya i harakteristika nekul’tiviruemyh kletok bakterij]: Authors abstract Candidate of Science thesis (Biology). М.; 2013. 23 p. Available at: https://dlib.rsl.ru/viewer/01005537423#?page=1. (in Russian)
28. Blinkova L. P., Pakhomov Yu. D., Dmitrieva O. V., Altshuler M. L. Nonculturable bacteria in lyophilized non spore-forming probiotics. In: Pro ceedings of the 13th International Conference “Functional and Medical Foods with Bioactive Compounds: Science and Practical Application”. Kyoto, Japan, May 11–12, 2013. Ed. by H. Nishino, T. Yoshikawa, D. Martirosyan. Dallas: Food Science Publisher; 2013; 79–80. Available at: https://www.functionalfoodscenter.net/files/82940156.pdf.
29. Nagata T., Mukae H., Kadota J., Hayashi T., Fujii T., Kuroki M., et al. Effect of erythromycin on chronic respiratory infection caused by Pseudomonas aeruginosa with biofilm formation in an experimental murine model. Antimicrob. Agents Chemother. 2004; 48 (6): 2251–2259. DOI: 10.1128/AAC.48.6.2251-2259.2004.
30. Lenchenko E., Blumenkrants D., Sachivkina N., Shadrova N., Ibragimova A. Morphological and adhesive properties of Klebsiella pneumonia biofilms. Vet. World. 2020; 13 (1): 197–200. DOI: 10.14202/vetworld.2020.197-200.
31. Lenchenko E. M., Sachivkina N. P. Studies of biofilms and phenotypic characteristics of Candida fungi. Veterinary Science Today. 2020; 2: 132–138. DOI: 10.29326/2304-196X-2020-2-33-132-138.
32. Filip’echeva Yu. A., Telesheva E. M., Yevstigneyeva S. S., Shelud’ko A. V., Ponomareva E. G., Petrova L. P., Katsy E. I. On the contribution of cell aggregation and extracellular DNA to biofilm formation and stabilization in Azospirillum brasilense bacteria. Izvestiya of Saratov University. New Series. Series: Chemistry. Biology. Ecology. 2018; 18 (4): 399–406. DOI: 10.18500/1816-9775-2018-18-4-399-406. (in Russian).
33. Sachivkina N., Lenchenko E., Strizakov A., Zimina V., Gnesdilova L., Gavrilov V., et al. The evaluation of intensity of formation of biomembrane by microscopic fungi of the Candida genus. Int. J. Pharmaceutical Res. 2018; 10 (4): 738–744. DOI: 10.31838/ijpr/2018.10.04.128.
34. Bergey D. H., Holt J. G., Pfennig N., Bryant M. P. Bergey’s Manual of Systematic Bacteriology. Baltimore: Williams & Wilkins, 1989; 4. 2648 p.
35. Sutton D., Fothergill A., Rinaldi M. Identifier of pathogenic and opportunistic fungi [Opredelitel’ patogennyh i uslovno patogennyh gribov]: trans. from English K. L. Tarasova, Yu. N. Kovaleva; ed. by I. R. Dorozhkova. M.: Mir; 2001. 468 p. (in Russian)
36. Chandra J., Kuhn D. M., Mukherjee P. K., Hoyer L. L., McCormick T., Ghannoum M. A. Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J. Bacteriol. 2001; 183 (18): 5385–5394. DOI: 10.1128/jb.183.18.5385-5394.2001.
37. Cadavid E., Echeverri F. The search for natural inhibitors of biofilm formation and the activity of the autoinductor C6-AHL in Klebsiella pneumonia ATCC 13884. Biomolecules. 2019; 9 (2):49. DOI: 10.3390/biom9020049.
38. Kirchhoff C., Cypionka H. Propidium ion enters viable cells with high membrane potential during live-dead staining. J. Microbiol. Methods. 2017; 142: 79–82. DOI: 10.1016/j.mimet.2017.09.011.
Review
For citations:
Lenchenko E.M., Sachivkina N.P., Blumenkrants D.A., Arsenyuk A.Yu. Visualization of microbial biofilms in case of digestive disorders in lambs. Veterinary Science Today. 2021;1(1):59-67. https://doi.org/10.29326/2304-196X-2021-1-36-59-67