Indirect determination of FMDV 146S component concentration in non-inactivated suspension by comparison of graphs of the second derivative for real-time RT-PCR curves
https://doi.org/10.29326/2304-196X-2020-3-34-220-227
Abstract
Keywords
About the Authors
M. I. DoroninRussian Federation
Maksim I. Doronin, Candidate of Science (Biology), Senior Researcher, Laboratory for FMD Prevention
600901, Vladimir, Yur’evets
D. V. Mikhalishin
Russian Federation
Dmitry V. Mikhalishin, Candidate of Science (Veterinary Medicine), Head of Laboratory for FMD Prevention
Vladimir
V. A. Starikov
Russian Federation
Vyacheslav A. Starikov, Candidate of Science (Veterinary Medicine), Leading Researcher, Laboratory for FMD Prevention
Vladimir
D. A. Lozovoy
Russian Federation
Dmitry A. Lozovoy, Doctor of Science (Veterinary Medicine), Associate Professor
Vladimir
A. V. Borisov
Russian Federation
Alexey V. Borisov, Candidate of Science (Veterinary Medicine), Leading Researcher, Laboratory for FMD Prevention
Vladimir
References
1. Lubroth J., Rodriguez L., Dekker A. Vesicular diseases. In: Diseases of Swine. Ed by B. E. Straw, J. J. Zimmerman, S. D’Allaire, D. J. Taylor. 9 th ed. Ames, Iowa, USA: Blackwell Publishing Professional; 2006: 517–536.
2. Foot and mouth disease (infection with foot and mouth disease virus). In: OIE. Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 2018; Chap. 3.1.8: 433–464. Available at: https://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.01.08_FMD.pdf.
3. Ponomarev А. P., Uzyumov V. L. Foot-and-mouth disease virus: structure, biological, physical and chemical properties [Virus yashchura: struktura, biologicheskie i fiziko-himicheskie svojstva]. Vladimir: Foliant; 2006: 250 p. (in Russian)
4. Alexandersen S., Zhang Z., Donaldson A. L., Garland A. J. M. The pathogenesis and diagnosis of foot-and-mouth disease. J. Comp. Pathol. 2003; 129 (1): 1–36. DOI: 10.1016/s0021-9975(03)00041-0.
5. Food-and-Mouth Disease Virus. Taxonomy. Available at: https://www.ncbi.nlm.nih.gov/taxonomy/?term=FMDV.
6. Bondarenko А. F. Qualitative and quantitative immunochemical assay of viral proteins [Kachestvennyj i kolichestvennyj immunohimicheskij analiz virusnyh belkov]. Suzdal; 1994: 92 p. (in Russian)
7. Lozovoy D. A., Mikhalishin D. V., Doronin M. I., Shcherbakov A. V., Timina A. M., Shishkova A. A., et al. Method for foot and mouth disease virus 146S-component concentration determination in virus-containing raw material for vaccine using reverse transcription-polymerase chain reaction method in real time mode. Patent No. 2619878 Russian Federation, Int. Cl. G01N 33/58 (2006.01), C12Q 1/68 (2006.01). FGBI “ARRIAH”. No. 2016140460. Date of filing: 14.10.2016. Date of publication: 18.05.2017. Bull. No. 14. (in Russian)
8. Liu W., Saint D. A. Validation of a quantitative method for real-time PCR kinetics. Biochem. Biophys. Res. Commun. 2002; 294 (2): 347–353. DOI: 10.1016/S0006-291X(02)00478-3.
9. Peirson S. N., Butler J. M., Foster R. G. Experimantal validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res. 2003; 31 (14):e73. DOI: 10.1093/nar/gng073.
10. Shaw A. E., Reid S. M., Ebert K., Hutchings G. H., Ferris N. P., King D. P. Implementation of a one-step real-time RT-PCR protocol for diagno sis of foot-and-mouth disease. J. Virol. Methods. 2007; 143 (1): 81–85. DOI: 10.1016/j.jviromet.2007.02.009.
11. Scherbakov A., Lomakina N., Drygin V., Gusev А. Application of RT-PCR and nucleotide sequencing in foot-and-mouth disease diagnosis. Veterinary Quarterly. 1998; 20 (2): 32–34. DOI: 10.1080/01652176.1998.9694962.
12. Wernike K., Beer M., Hoffmann B. Rapid detection of foot-and-mouth disease virus, influenza A virus and classical swine fever virus by high-speed real-time RT-PCR. J. Virol. Methods. 2013; 193 (1): 50–54. DOI: 10.1016/j.jviromet.2013.05.005.
13. Chomczynski P., Sacchi N. The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twentysomething years on. Nat. Protoc. 2006; 1 (2): 581–585. DOI: 10.1038/nprot.2006.83.
14. Peirson S. N., Butler J. N. RNA extraction from mammalian tissues. In: Circadian Rhythms. Methods in Molecular Biology™. Eds E. Rosato. 2007; 362: 315–327. DOI: 10.1007/978-1-59745-257-1_22.
15. The analysis of DNA or RNA using its wavelengths: 230 nm, 260 nm, 280 nm. Available at: https://www.webcitation.org/6ATzE7YQz?url=http://bioteachnology.com/dna/analysis-dna-rna-wavelengths-230-260-280-nm (date of access: 02.06.2019).
16. Glasel J. A. Validity of nucleic acid purities monitored by 260 nm/280 nm absorbance ratios. Biotechniques. 1995; 18 (1): 62–63. PMID: 7702855.
17. Rutledge R. G., Côté C. Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res. 2004; 31 (16):e93. DOI: 10.1093/nar/gng093.
18. Wittwer C. T., Gutekunst M., Lohmann S. Method for quantification of an analyte. Patent No. 6,503,720 B2 United States, Int. Cl. C12Q 1/68, C12P 19/34; C07H 21/04; CO7H 21/00. Roche Diagnostics GmbH (DE); University of Utah Research Foundation, Salt Lake City, UT (US). Appl. No. 09/789,170. Filed: Feb. 20, 2001. Prior publication data: Mar. 7, 2002. Date of patent: Jan. 7, 2003.
Review
For citations:
Doronin M.I., Mikhalishin D.V., Starikov V.A., Lozovoy D.A., Borisov A.V. Indirect determination of FMDV 146S component concentration in non-inactivated suspension by comparison of graphs of the second derivative for real-time RT-PCR curves. Veterinary Science Today. 2020;(3):220-227. https://doi.org/10.29326/2304-196X-2020-3-34-220-227