Preview

Veterinary Science Today

Advanced search

Basic reproduction number for certain infectious porcine diseases: estimation of required level of vaccination or depopulation of susceptible animals

https://doi.org/10.29326/2304-196X-2020-3-34-179-185

Abstract

Basic reproduction number (R0) is one of the fundamental quantitative characteristics in epidemiology of infectious human and animal diseases. This parameter reflects the biological properties of the infectious agent, the social and economic aspects of animal husbandry, natural factors associated with the habitat of the animal population invaded by the virus (microorganism), as well as the effectiveness of methods selected for infection control, in particular, the implementation of preventive measures; it also allows foreseeing the number and probability of occurrence of new secondary outbreaks in the area at risk of the disease spread. The paper presents data on the estimation of basic reproduction number (R0) for a range of infectious porcine diseases. A systematic analysis has been undertaken with respect to the publications available on the estimation of R 0 for various virus isolates of African swine fever, classical swine fever, foot-and-mouth disease, porcine reproductive and respiratory syndrome, Aujeszky’s disease, hepatitis E, encephalomyocarditis, porcine circovirus type 2, as well as pleuropneumonia associated with Actinobacillus pleuropneumoniae, and diseases caused by pathogenic isolates of Mycoplasma hyopneumoniae. Based on the obtained R0 values, recommendations for the veterinary services are made on preventive vaccination of pigs against the above mentioned diseases in the areas at risk of infection spread. The necessary conditions for wild boar depopulation aimed to prevent new African swine fever outbreaks are identified, namely, the elimination of at least 75% of the wild boar population living in the risk zone within the period of time equal to one infectious period.

About the Authors

V. M. Gulenkin
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Vladimir M. Gulenkin, Candidate of Science (Biology), Head of Sector, Information and Analysis Centre

600901, Vladimir, Yur’evets



F. I. Korennoy
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Fedor I. Korennoy, Candidate of Science (Geography), Researcher, Information and Analysis Centre

Vladimir



A. K. Karaulov
FGBI “Federal Centre for Animal Health” (FGBI “ARRIAH”)
Russian Federation

Anton K. Karaulov, Candidate of Science (Veterinary Medicine), Head of Information and Analysis Centre

Vladimir



References

1. Bailey N. T. J. The Mathematical Approach to Biology and Medicine. М.: Mir; 1970. 326 p. (in Russian)

2. Basic reproduction number. Available at: https://en.wikipedia.org/wiki/Basic_reproduction_number.

3. Plotkin S. A., Orenstein W. A., Offin P. A. eds. Vaccines. 5 th ed. Philadelphia: Saunders Company; 2008. 1725 p.

4. Guberti V., Khomenko S., Masiulis M., Kerba S. African swine fever in wild boar ecology and biosecurity. Rome. FAO Animal Production and Health Manual. 2019; No. 22. Rome: FAO, OIE and EC. Available at: http://www.fao.org/3/ca5987en/CA5987EN.pdf.

5. African swine fever in the countries of the world. Information and Analysis Centre, FGBI “ARRIAH”. 27.02.2020. Available at: http://fsvps.ru/fsvps-docs/ru/iac/foreign/2020/february/asf_world.pdf. (in Russian)

6. Belyanin S. A., Vasilev A. P., Kolbasov D. V., Tsybanov S. Zh., Balyshev V. M., Kurinnov V. V., Chernykh O. Yu. Virulence of African swine fe ver isolates. Veterinaria Kubani. 2011; 5: 9–10. eLIBRARY ID: 16911088. (in Russian)

7. Guinat C., Porphyre T., Gogin A., Dixon L., Pfeiffer D. U. Inferring withinherd transmission parameters for African swine fever virus using mortality data from outbreaks in the Russian Federation. Transbound. Emerg. Dis. 2018; 65 (2): e264–e271. DOI: 10.1111/tbed.12748.

8. Guinat C., Gubbins S., Vergne T., Gonzales J. L., Dixon L., Pfeiffer D. U. Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. Epidemiol. Infect. 2016; 144 (1): 25–34. DOI: 10.1017/S0950268815000862.

9. Pietschmann J., Guinat C., Beer M., Pronin V., Tauscher K., Petrov A., et al. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch. Virol. 2015; 160: 1657–1667. DOI: 10.1007/s00705-015-2430-2.

10. Gulenkin V. M., Korennoy F. I., Karaulov A. K., Dudnikov S. A. Cartographical analysis of African swine fever outbreaks in the territory of the Russian Federation and computer modeling of the basic repro duction ratio. Prev. Vet. Med. 2011; 102 (3): 167–174. DOI: 10.1016/j.prevetmed.2011.07.004.

11. De Carvalho Ferreira H. C., Backer J. A., Weesendorp E., Klinkenberg D., Stegeman J. A., Loeffen W. L. A. Transmission rate of African swine fever virus under experimental conditions. Vet. Microbiol. 2013; 165 (3–4): 296–304. DOI: 10.1016/j.vetmic.2013.03.026.

12. Korennoy F. I., Gulenkin V. M., Gogin A. E., Vergne T. Estimating the basic reproductive number for African swine fever using the Ukrainian historical epidemic of 1977. Transbound. Emerg. Dis. 2017; 64 (6): 1858–1866. DOI: 10.1111/tbed.12583.

13. Barongo M. B., Stahl K., Bett B., Bishop R. P., Fevre E. M., Aliro T., et al. Estimating the basic reproductive number (R0 ) for African swine fe ver virus (ASFV) transmission between pig herds in Uganda. PLoS One. 2015; 10 (5):e0125842. DOI: 10.1371/journal.pone.0125842.

14. On approval of the veterinary rules for implementation of preventive, diagnostic, restrictive and other measures, the imposition and lifting of quarantine and other restrictions aimed to prevent the spread and eradicate the outbreaks of African swine fever [Ob utverzhdenii ve terinarnyh pravil osushchestvleniya profilakticheskih, diagnosticheskih, ogranichitel’nyh i inyh meropriyatij, ustanovleniya i otmeny karantina i inyh ogranichenij, napravlennyh na predotvrashchenie rasprostraneniya i likvidaciyu ochagov afrikanskoj chumy svinej]: Order of the RF Ministry of Agriculture No. 213 dated May 31, 2016. Available at: https://www.garant.ru/products/ipo/prime/doc/71373924/. (in Russian)

15. Iglesias I., Munoz M., Montes F., Perez A., Gogin A., Kolbasov D., de la Torre A. Reproductive ratio for the local spread of African swine fever in wild boars in the Russian Federation. Transbound. Emerg. Dis. 2016; 63 (6): e237e245. DOI: 10.1111/tbed.12337.

16. Marcon A., Linden A., Satran P., Gervasi V., Licoppe A., Guberti V. R 0 estimation for the African swine fever epidemics in wild boar of Czech Republic and Belgium. Vet. Sci. 2020; 7:2. DOI: 10.3390/vetsci7010002.

17. Garza S. J., Tabak M. A., Miller R. S., Farnsworth M. L., Burdett C. L. Abiotic and biotic influences on home-range size of wild pigs (Sus scrofa). J. Mammal. 2018; 99 (1): 97–107. DOI: 10.1093/jmammal/gyx154.

18. De Jong M. C. M., Kimman T. G. Experimental quantification of vaccine-induced reduction in virus transmission. Vaccine. 1994; 12 (8): 761–766. DOI: 10.1016/0264-410X(94)90229-1.

19. Eble P. L., De Koeijer A. A., De Jong M. C. M., Engel B., Dekker A. A meta-analysis quantifying transmission parameters of FMDV strain O Taiwan among non-vaccinated and vaccinated pigs. Prev. Vet. Med. 2008; 83 (1): 98–106. DOI: 10.1016/j.prevetmed.2007.06.004.

20. Klinkenberg D., De Bree J., Laevens H., De Jong M. C. M. Within-and between-pen transmission of classical swine fever virus: a new method to estimate the basic reproduction ratio from transmission experiments. Epidemiol. Infect. 2002; 128 (2): 293–299. DOI: 10.1017/s0950268801006537.

21. Velthuis A. G. J., De Jong M. C. M., Kamp E. M., Stockhofe N., Verheijden J. H. M. Design and analysis of an Actinobacillus pleuropneumoniae transmission experiment. Prev. Vet. Med. 2003; 60 (1): 53–68. DOI: 10.1016/s0167-5877(03)00082-5.

22. Charpin C., Mahé S., Keranflec’h A., Belloc C., Cariolet R., Le Potier M.-F., Rose N. Infectiousness of pigs infected by the porcine re productive and respiratory syndrome virus (PRRSV) is time-dependent. Vet. Res. 2012; 43:69. DOI: 10.1186/1297-9716-43-69.

23. Laevens H., Koenen F., Deluyker H., De Kruif A. Experimental infection of slaughter pigs with classical swine fever virus: Transmission of the virus, course of the disease and antibody response. Vet. Rec. 1999; 145 (9): 243–248. DOI: 10.1136/vr.145.9.243.

24. Weesendorp E., Backer J., Stegeman A., Loeffen W. Effect of strain and inoculation dose of classical swine fever virus on within-pen transmission. Vet. Res. 2009; 40:59. DOI: 10.1051/vetres/2009041.

25. Stegeman A., Elbers A. R. W., Bouma A., De Smit H., De Jong M. C. M. Transmission of classical swine fever virus within herds during the 19971998 epidemic in the Netherlands. Prev. Vet. Med. 1999; 42 (3–4): 201–218. DOI: 10.1016/S0167-5877(99)00076-8.

26. Pileri E. Transmission of porcine reproductive and respiratory syndrome virus (PRRSV): Assessment of the reproduction rate (R) in different conditions: PhD Thesis. Bellaterra: Universitat Autonoma de Barcelona, 2015. 130 p. Available at: https://pdfs.semanticscholar.org/a65c/8ebc1dfc3ff3402867816d5a35bcfdda0f2f.pdf.

27. Andraud M., Glasland B., Durand B., Cariolet R., Jestin A., Madec F., et al. Modeling the time-dependent transmission rate for porcine circovirus type 2 (PCV2) in pigs using data from serial transmission expe riments. J. R. Soc. Interface. 2008; 6 (30): 39–50. DOI: 10.1098/rsif.2008.0210.

28. Kluivers M., Maurice H., Vyt P., Koenen F., Nielen M. Transmission of encephalomyocarditis virus in pigs estimated from field data in Belgium by means of R0 . Vet. Res. 2006; 37 (6): 757–766. DOI: 10.1051/vetres:2006035.

29. Maurice H., Nielen M., Stegeman J. A., Vanderhallen H., Koenen F. Transmission of encephalomyocarditis virus (EMCV) among pigs experimentally quantified. Vet. Microbiol. 2002; 88: 301–314. DOI: 10.1016/S03781135(02)00127-X.

30. Maurice H., Thulke H. H., Schmid J. S., Stegeman A., Nielen M. Impact of compartmentalised housing on direct encephalomyocarditis virus (EMCV) transmission among pigs; insight from a model. Prev. Vet. Med. 2016; 127: 105–112. DOI: 10.1016/j.prevetmed.2016.03.006.

31. Spyrou V., Maurice H., Billinis C., Papanastassopoulou M., Psalla D., Nielen M., et al. Transmission and pathogenicity of encephalomyocarditis virus (EMCV) among rats. Vet. Res. 2004; 35 (1): 113–122. DOI: 10.1051/vetres:2003044.

32. Bouwknegt M., Frankena K., Rutjes S. A., Wellenberg G. J., De Roda Husman A. M., Van der Poel W. H. M., De Jong M. C. M. Estimation of hepatitis E virus transmission among pigs due to contact-exposure. Vet. Res. 2008; 39 (5):40. DOI: 10.1051/vetres:2008017.

33. Meyns T., Maes D., Dewulf J., Vicca J., Haesebrouck F., De Kruif A. Quantification of the spread of Mycoplasma hyopneumoniae in nursery pigs using transmission experiment. Prev. Vet. Med. 2004; 66 (1–4): 265–275. DOI: 10.1016/j.prevetmed.2004.10.001.


Review

For citations:


Gulenkin V.M., Korennoy F.I., Karaulov A.K. Basic reproduction number for certain infectious porcine diseases: estimation of required level of vaccination or depopulation of susceptible animals. Veterinary Science Today. 2020;(3):179-185. https://doi.org/10.29326/2304-196X-2020-3-34-179-185

Views: 747


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)