Preview

Veterinary Science Today

Advanced search

EFFECTS OF MODERATELY VIRULENT AFRICAN SWINE FEVER VIRUS ON INTERLEUKIN-10 PRODUCTION

https://doi.org/10.29326/2304-196X-2019-3-30-23-28

Abstract

A characteristic feature of African swine fever virus (ASFV) is the ability to escape from host immune response, affecting macrophages and replicating in them. Besides, ASFV - specific antibodies do not completely neutralize the virus. Cytokines are important factors for various viral infection pathologies. The virulence of ASFV isolates may depend on the capacity to regulate cytokine expression by macrophages. Thus, when comparing in vitro and in vivo cytokine production by macrophages, it was established that infection with low virulent virus isolates leads to an immune response with a predominance of cytokines involved in cellular immunity, such as INF-α and IL-12p40, as compared with infection with highly virulent isolates. The aim of this paper was to study the effect of African swine fever virus on the production of IL-10, a pleiotropic cytokine that inhibits synthesis of cytokines and shows a strong antiinflammatory effect. For this, 12 piglets were experimentally infected intramuscularly with a continuous cell culture-adapted ASFV isolate Vero25 at a dose of 10 HAdU per animal followed by control infection of surviving animals with the reference virus isolate Arm 07 at a dose of 1,000 HAdU per animal. Temperature measurements were taken and blood sampling to obtain serum was conducted during the experiment. IL-10 amount in blood sera was determined using Invitrogen test systems (Thermo Fisher, USA). A higher IL-10 level (15.8–173 pg/ml) was observed in blood sera of dead animals infected with a moderately virulent virus, as compared with surviving pigs (4–5 pg/ml). No correlation between the speed of appearance of specific antibodies and IL-10 serum levels has been established. No noticeable effect of the IL-10 serum level prior to infection on the survival rate of animals has been observed. Further studies are needed to establish a causal relationship, including study of the expression of various cytokines during infection with both low- and highly virulent virus isolates.

About the Authors

A. S. Pershin
FGBI "ARRIAH", Vladimir
Russian Federation
Senior Researcher, Candidate of Science (Veterinary Medicine)


I. V. Shevchenko
FGBI "ARRIAH", Vladimir
Russian Federation
Researcher, Candidate of Science (Biology)


A. S. Igolkin
FGBI "ARRIAH", Vladimir
Russian Federation
Head of Laboratory, Candidate of Science (Veterinary Medicine)


Ye. V. Aronova
FGBI "ARRIAH", Vladimir
Russian Federation
Senior Researcher, Candidate of Science (Biology)


N. N. Vlasova
FGBI "ARRIAH", Vladimir
Russian Federation
Senior Researcher, Doctor of Science (Biology)


References

1. Influence of passive immunization on clinical and pathological features of pig infection with isolate Martins-Crimea 01/16 ASFV [Vliyanie passivnoj immunizacii na klinicheskie i patologoanatomicheskie izmeneniya u svinej, zarazhennyh izolyatom Martins-Krym 01/16 virusa ACHS]. А. S. Pershin, S. G. Remyga, I. V. Shevchenko [et al.]. Veterinaria. 2018; 1: 2531 (in Russian).

2. African swine fever virus infection induces tumor necrosis factor alpha production: implications in pathogenesis. M. Gómez del Moral, E. Ortuño, P. Fernández-Zapatero [et al.]. J. Virol. 1999; 73 (3): 2173–2180; PMCID: PMC104462.

3. African swine fever virus: a B cell-mitogenic virus in vivo and in vitro. H. Takamatsu, M. S. Denyer, C. Oura [et al.]. J. Gen. Virol. 1999; 80 (Pt. 6): 1453–1461; DOI: 10.1099/0022-1317-80-6-1453.

4. African swine fever: Expression of interleukin-1 alpha and tumour necrosis factor-alpha by pulmonary intravascular macrophages. L. Carrasco, A. Núñez, F. J. Salguero [et al.]. J. Comp. Pathol. 2002; 126 (2–3): 194–201; DOI: 10.1053/jcpa.2001.0543.

5. Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter. R. Lang, R. L. Rutschman, D. R. Greaves, P. J. Murray. J. Immunol. 2002; 168 (7): 3402–3411; DOI: 10.4049/jimmunol.168.7.3402.

6. Biological properties of African swine fever virus Odintsovo 02/14 isolate and its genome analysis. A. A. Elsukova, I. V. Shevchenko, A. A. Varentsova [et al.]. Int. J. Environ. Agricult. Res. 2017; 3 (10): 26–37; DOI: 10.25125/ agriculture-journal-IJOEAR-OCT-2017-15.

7. Blome S., Gabriel C., Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013; 173 (1): 122–130; DOI: 10.1016/j.virusres.2012.10.026.

8. Changes in macrophages in spleen and lymph nodes during acute African swine fever: expression of cytokines. F. J. Salguero, E. Ruiz-Villamor, M. J. Bautista [et al.]. Vet. Immunol. Immunopathol. 2002; 90 (1–2): 11–22; DOI: 10.1016/S0165-2427(02)00225-8.

9. Characterization of the interaction of African swine fever virus with monocytes and derived macrophage subsets. G. Franzoni, S. P. Graham, S. D. Giudici [et al.]. Vet. Microbiol. 2017; 198: 88–98; DOI: 10.1016/j.vetmic.2016.12.010.

10. Comparative analysis of clinical and biological characteristics of African swine fever virus isolates from 2013 year Russian Federation. N. N. Vlasova, A. A. Varentsova, I. V. Shevchenko [et al.]. British Microbiol. Res. J. 2015; 5 (3): 203–215; DOI: 10.9734/bmrj/2015/12941.

11. Defective humoral responses and extensive intravascular apoptosis are associated with fatal outcome of Ebola virus-infected patients. S. Baize, E. M. Leroy, M. C. Georges-Courbot [et al.]. Nat. Med. 1999; 5 (4): 423–426; DOI: 10.1038/7422.

12. Evolution of African swine fever virus genes related to evasion of host immune response. M. Frączyk, G. Woźniakowski, A. Kowalczyk [et al.]. Vet. Microbiol. 2016; 193: 133–144; DOI: 10.1016/j.vetmic.2016.08.018.

13. Expression at mRNA level of cytokines and A238L gene in porcine blood-derived macrophages infected in vitro with African swine fever virus (ASFV) isolates of different virulence. S. Gil, M. Spagnuolo-Weaver, A. Canals [et al.]. Arch. Virol. 2003; 148 (11): 2077–2097; DOI: 10.1007/s00705-003- 0182-x.

14. Genetic variation among African swine fever genotype II viruses, Eastern and Central Europe. C. Gallardo, J. Fernández-Pinero, V. Pelayo [et al.]. Emerg. Infect. Dis. 2014; 20 (9): 1544–1547; DOI: 10.3201/eid2009.140554.

15. IL-10 enhances expression of the IL-2 receptor alpha chain on T cells. S. B. Cohen, P. D. Katsikis, M. Feldmann, M. Londei. Immunology. 1994; 83 (3): 329–332; PMCID: PMC1415032.

16. IL-10, an inflammatory/inhibitory cytokine, but not always. P. Conti, D. Kempuraj, K. Kandere [et al.]. Immunol Lett. 2003; 86 (2): 123–129; DOI: 10.1016/s0165-2478(03)00002-6.

17. In vivo depletion of CD8+ T lymphocytes abrogates protective immunity to African swine fever virus. C. A. Oura, M. S. Denyer, H. Takamatsu, R. M. Parkhouse. J. Gen. Virol. 2005; 86 (Pt. 9): 2445–2450; DOI: 10.1099/ vir.0.81038-0.

18. Induction of IL-10 and inhibition of experimental arthritis are specific features of microbial heat shock proteins that are absent for other evolutionarily conserved immunodominant proteins. B. Prakken, U. Wendling, R. van der Zee [et al.]. J. Immunol. 2001; 167 (8): 4147–4153; DOI: 10.4049/ jimmunol.167.8.4147.

19. Inflammatory cytokines in animal health and disease. M. Murtaugh, M. J. Baarsch, Y. Zhou [et al.]. Vet. Immunol. Immunopathol. 1996; 54 (1–4): 45–55; DOI: 10.1016/S0165-2427(96)05698-X.

20. Influence of age and dose of African swine fever virus infections on clinical outcome and blood parameters in pigs. J. Post, E. Weesendorp, M. Montoya, W. L. Loeffen. Viral Immunol. 2017; 30 (1): 58–69; DOI: 10.1089/ vim.2016.0121.

21. Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. P. Wang, P. Wu, M. I. Siegel [et al.]. J. Biol. Chem. 1995; 270 (16): 9558–9563; DOI: 10.1074/jbc.270.16.9558.

22. Interleukin-10 and the interleukin-10 receptor. K. W. Moore, R. de Waal Malefyt, R. L. Coffman, A. O’Garra. Ann. Rev. Immunol. 2001; 19: 683–765; DOI: 10.1146/annurev.immunol.19.1.683.

23. Manipulating IL-10 signalling blockade for better immunotherapy. G. Ni, T. Wang, S. Walton [et al.]. Cell. Immunol. 2015; 293 (2): 126–129; DOI: 10.1016/j.cellimm.2014.12.012.

24. Markedly elevated levels of interferon (IFN)-γ, IFN-α, interleukin (IL)-2, IL-10, and tumor necrosis factor-α associated with fatal Ebola virus infection. F. Villinger, P. E. Rollin, S. S. Brar [et al.]. J. Infect. Dis. 1999; 179 (Suppl. 1): 188–191; DOI: 10.1086/514283.

25. Molecular characterization and SNP development for the porcine IL6 and IL10 genes. E. Daniłowicz, M. Akouchekian, C. Drogemuller [et al.]. Anim. Biotechnol. 2008; 19 (3): 159–165; DOI: 10.1080/10495390802088621.

26. Mosser D. M. The many faces of macrophage activation. J. Leukoc. Biol. 2003; 73 (2): 209–212; DOI: 10.1189/jlb.0602325.

27. Pathology of African swine fever: the role of monocyte-macrophage. J. C. Gómez-Villamandos, M. J. Bautista, P. J. Sánchez-Cordón, L. Carrasco. Virus. Res. 2013; 173 (1): 140–149; DOI: 10.1016/j.virusres.2013.01.017.

28. Peters C. J. Viral hemorrhagic fevers. Viral Pathogenesis. ed. N. Nathanson [et al.]. Philadelphia: Lippincott-Raven, 1997; 779–799.

29. Regulatory activity of autocrine IL-10 on dendritic cell functions. S. Corinti, C. Albanesi, A. la Sala [et al.]. J. Immunol. 2001; 166 (7): 4312–4318; DOI: 10.4049/jimmunol.166.7.4312.

30. The low-virulent African swine fever virus (ASFV/NH/P68) induces enhanced expression and production of relevant regulatory cytokines (IFNα, TNFα and IL12p40) on porcine macrophages in comparison to the highly virulent ASFV/L60. S. Gil, N. Sepúlveda, E. Albina [et al.]. Arch. Virol. 2008; 153 (10): 1845–1854; DOI: 10.1007/s00705-008-0196-5.

31. The pathogenic role of pulmonary intravascular macrophages in acute African swine fever. L. Carrasco, F. C. de Lara, J. C. Gómez-Villamandos [et al.]. Res. Vet. Sci. 1996; 61 (3): 193–198; PMID: 8938846.

32. Vaccination against tuberculosis: how can we better BCG? J. M. Pitt, S. Blankley, H. McShane, A. O’Garra. Microb. Pathog. 2013; 58: 2–16; DOI: 10.1016/j.micpath.2012.12.002.

33. Wardley R. C. Effect of African swine fever on lymphocyte mitogenesis. Immunology. 1982; 46 (1): 215–220; PMCID: PMC1555335.


Review

For citations:


Pershin A.S., Shevchenko I.V., Igolkin A.S., Aronova Ye.V., Vlasova N.N. EFFECTS OF MODERATELY VIRULENT AFRICAN SWINE FEVER VIRUS ON INTERLEUKIN-10 PRODUCTION. Veterinary Science Today. 2019;(3):23-28. https://doi.org/10.29326/2304-196X-2019-3-30-23-28

Views: 731


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2304-196X (Print)
ISSN 2658-6959 (Online)