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ABSTRACT

Introduction. Effective measures for African swine fever outbreak prevention and early detection are required in view of global spread of African swine fever, fatal
viral hemorrhagic disease of domestic pigs and wild boars. Wild boar population managing and search for the wild boars died of African swine fever and being
the virus source are considered priority measures for the disease control in wildlife.

Objective. Generalization of currently available knowledge about advanced technologies for the use of unmanned aerial vehicles (drones) in combination with
artificial intelligence-based methods in the wild.

Materials and methods. Analytical research methods including search in the following databases were used: PubMed, Springer, Wiley Online Library, Google
Scholar, CrossRef, Russian Science Citation Index (RSCI), eLIBRARY, CyberLeninka.

Results. Potential of using unmanned aerial vehicles (drones) and artificial intelligence (neural network) for detection of wild boars and their remnants in the
context of combating African swine fever is described in the review. The role of wild boars in the disease spread and the need for wild boar population regulation
are discussed in detail. Also, the importance of timely wild boar carcass removal and use of modern technologies for wild boar population recording and its density
estimation are underlined. Data on the use of drones equipped with various technical devices for study of large animal populations in the wild are analyzed,
advantages and peculiarities of unmanned aerial vehicle use are indicated. Experience gained in using neural networks-based techniques for automatic processing
of animal images acquired from drones is also summarized.

Condlusion. Artificial intelligence-integrated unmanned aerial vehicles appear to be a key tool for managing wild boar populations and the rapid detection of
African swine fever dead wild boars that allows improvement of overall effectiveness of the measures taken against this disease.
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WHTerpauna npumeHeHns POHOB U UCKYCCTBEHHOTO
UHTENNeKTa ANA 00HapyXeHna JUKNX KabaHos,
TYLU 1 X OCTAHKOB B (BA3M C aQPUKAHCKOI YYMOIA (BUHEN

T. 10. becnanoga, E. B. Koporoauna, T. B. Muxanesa
OTBHY «DenepanbHblit MccnefoBaTenbCkuil LEHTP BUpyconorun n Mukpobuonorum» (OTbHY OULBUM); Camapckuii HayuHo-uccnesoBaTenbekuii
BeTepuHapHblit UHCTUTYT — dunman OTBHY OULBuM (CamHUBU — dunnan OTBHY OULIBUM), yn. MarHuToropckas, 8, . Camapa, 443013, Poccua

PE3IOME

Beepenue. lnobanbHoe pacnpocTpaHeHye adpuKaHCKoil YyMbl CBUHeN, CMepTeNibHO OMAcHoro BIPYCHOTO reMoppariyeckoro 3aboneBaHuA JOMALLHUX CBY-
Heil 1 ANKNX KabaHoB, AMKTYET He0OX0AUMOCTb MpUMeHeHNs IOOEKTUBHBIX Mep NMpeaynpexeHns 1 PaHHEro BbisBNEHIA BCMbILLEK. KOHTPOMb UNCIEHHOCTH
MONyNALIAM, a TAKXKe MOUCK TYLL AUKUX KabaHOB, NOrMOLLNX 0T adPUKAHCKOI UyMbl CBUHEN 1 ABNAKLLMXCA UCTOUHUKOM Nepesiauil BUPYCa, CUUTAIOTCA NPUOpH-
TETHbIMU Mepamyl B ynpaBneHuy 3abonesaxnem B aUKoii npupope.

Lienb nccnepoBanua. 06061LeHIe MMEIOLMXCA B HACTOALLIe BPEMA 3HaHUI 0 NepesoBbIX TEXHONOTMAX NPUMEHEHIA HeCUNOTHBIX SieTaTeNbHbIX annapaToB
(ApOHOB) B YCNOBYAX AMKOI MPUPOABI B COYETAHNN C METOAAMN UCKYCCTBEHHOTO UHTEMNEKTa.
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Marepuanbi 1 meToabl. [1py BbINOAHEHUM PaboTbl NPUMEHANNCH aHANUTYECKIE METOAbI MCCNeA0BaHMIA C MCMONb30BaHKMeM 6a3 AaHHbIX PubMed, Springer,
Wiley Online Library, Google Scholar, CrossRef, PUHL, eLIBRARY, CyberLeninka.

Pe3ynbTatbl. B saHHOM 0630pe paccMaTpuBaeTCA BO3MOXKHOCTb NPUMeHeHIA 6eCnnoTHbIX NeTaTeNbHbIX annapaToB (APOHOB) 1 CKYCCTBEHHOTO MHTENNEKTa
(HefipOHHDIX ceTei) AnA 0OHaPy»KeHNA AMKNX KabaHOB 1 X OCTAHKOB B KOHTEKCTe 6opbObl ¢ adpukaHcKoil uymoit cBuHeit. MloapobHo 06cyaaeTca ponb AnKIX
kabaHoB B pacnpocTpaHeHi 3a60MeBaHMA 1 HEOOXOAUMOCTb KOHTPOMA UX NOMYNALYMM, 3HAUEHNe CBORBPEMEHHOTO yaneHua TpynoB KabaHos, Npy 3ToM Nog-
YepKMBAETCA BaXKHOCTb ICMO/Ib30BAHIA COBPEMEHHDIX TEXHOMOYIA NA YYeTa YNCTIEHHOCTI Y IIOTHOCTI MONYJALMYN ANKOT0 KabaHa. MpoaHaniu3mnpoBaHa uHop-
MaLKA 0 NPUMEHEHUN APOHOB, OCHALLIEHHbIX Pa3NAYHBIMM TEXHINYECKUMM CPEACTBAMY, IPU U3YYeHUN NONYAALMIA KpYNHbIX BUAOB XKUBOTHBIX B YCNOBUAX AUKOI
MpUPOZbI, OTMEUEHbI NPenMyLLECTBA U 0COBEHHOCTI MCNONb30BAHNA OECIUNOTHBIX NeTaTeNbHbIX annapaTto. Takxe 0606LLeH ONbIT NPUMEHEHNA HEPOHHBIX
ceTeil B KOHTEKCTe aBTOMATHYeCKOI 06paboTKM NONyUeHHbIX C NOMOLLbIO APOHOB M300paKeHNii XKIBOTHBIX.

3aknioueHue. [HTerpauna 6eCUNOTHbIX NETaTeNbHbIX aNMapaToB U UCKYCCTBEHHOTO UHTENEKTa, BEPOATHO, MOXKET CTaTb K/KUEBbIM UHCTPYMEHTOM B KOH-
Tpone NonynALmMN ANKOro kabaxa u 6bIcTpom 06HapyxeHnN Ty KabaHo, nornbLX BCeACTBIE adpUKAHCKOI YyMbl CBUHE, YTO B LieNIOM NO3BONIUT NOBbICUTD
30 eKTUBHOCTb Mep, HanpaBNeHHbIX Ha 60pbOy ¢ AaHHBIM 3ab0neBaHMeM.

KnioueBble cnoBa: 0630[), INKKe KabaHbl, a¢pI/IKaH(Kaﬂ yyma CBUHEl1, MeTOAbI yueTa XXUBOTHbIX, MOHUTOPUHT, aap0¢oroc1>eMKa, 6ecnunoTHble NeTaTeNbHble
annaparbl, APOHbI, M(Ky(CTBEHHbIVI WUHTENNEKT, HeVIpOHHaH CeTb

bnaropapHocTu: Pabota BbinonHexa npu nopaepxke MunobpHayku Poccun B pamkax focynapctsenHoro 3apaqna OTBHY «DegepanbHbiii uccnesosatenbekuii
LieHTp Bupyconorun n Mukpobuonoruu» (tema N2 FGNM-2022-0004). ABTopbl 651arofapAT peLieH3eHTOB 3a WX BKaZ B IKCNEPTHYI0 OLeHKY AaHHOM paboTbl.

[insa yutuposauus: becnanosa T. H0., Koporoguha E. B., Muxanesa T. B. iHTerpauua npumeHeHua ApoHOB U UCKYCCTBEHHOTO MHTENNEKTa ANA 06HapyKeHua
ANKMX KabaHOB, TYLL 1 UX OCTAHKOB B CBA3M C apuKaHCKOil uymoii cBUHei. BemepuHapus ce200Ha. 2025; 14 (2): 123-132. https://doi.org/10.29326/2304-

196X-2025-14-2-123-132

KoHnuKT MHTEpecoB: ABTOPbI 3aABNAIOT 06 OTCYTCTBUN KOHGINKTA HHTEPECOB.
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INTRODUCTION

African swine fever (ASF), deadly viral hemorrhagic di-
sease affecting both domestic pigs (Sus scrofa domestica)
and wild boars (Sus scrofa), remains a critical global threat
to pig industries [1]. Wild boars are now commonly recog-
nized as key reservoirs and vectors for ASF transmission;
infected migratory populations have been found to intro-
duce the virus to multiple European countries [2, 3, 4, 5].
Monitoring of Eurasian wild boar populations - including
assessments of population size, density, and dynamics —
constitutes a critical component of ASF management
strategies for the disease outbreak containment in wild
populations. Early outbreak detection including system-
atic searching for carcasses, a primary source of direct and
indirect ASF virus transmission, represents one of the most
effective measures for ASF eradication in the wild. Rapid
detection and safe disposal of dead wild boars can prevent
further infection spread, since the virus is found to per-
sist in ASF dead wild boars for several months [6, 7, 8, 9].
Searching for wild boar carcasses and remnants is a labo-
rious and time — consuming work, which strongly depends
on the outbreak size, season, terrain, vegetation density
as well as other factors. According to researchers, most
of the wild boar carcasses are often missed by traditional
ground-based walking methods [10]. Therefore, alterna-
tive modern methods and technologies are required for
reliable wild boar population size and density assessment
and optimization of the process of searching for wild boar
carcasses and remnants.

Currently, unmanned aerial vehicles (UAVs), known
as unmanned aircraft system, copters, or drones con-
trolled by one or more pilots using communication chan-
nels at remote piloting points (ground control stations),
are becoming increasingly popular. Unmanned aerial
vehicles are widely used in absolutely different fields, in-

cluding wildlife monitoring. Moreover, various UAV sys-
tems, together with developing artificial intelligence (Al)
technologies, are used for wild animal censusing, animal
behaviour and movement analysis [11, 12, 13].In the last
decade, numerous studies of populations and natural
habitats of both wild birds [14, 15, 16] and various wild
large animal species (primates, elephants, hippos, ungu-
lates) were carried out using drones as a part of environ-
mental protection measures [17, 18, 19, 20, 21, 22, 23].
However, there are almost no data on their use for wild
boar searching and for wild boar population size assess-
ment in peer-reviewed sources. UAVs are one of the prom-
ising options to be added to the set of traditional mon-
itoring methods. Some studies have shown that drones
allow for more rapid and accurate estimation of wild
animal populations in vast territories as compared with
ground-based methods (walking monitoring, camera
traps, etc.) [17, 24]. Previously, large-scale aerial photo-
graphy of wildlife was carried out using manned aircrafts,
but use of UAVs for aerial photography is much cheaper.
UAVs can work under cloud cover in contrast to satel-
lites [25]. Artificial intelligence and machine learning (ML)
are revolutionizing wildlife monitoring by improving
data quality for population estimates, streamlining data
collection, and automating routine data processing.
Neural networks — trained on extensive datasets from
drone imagery, camera traps, and video cameras - can
now achieve species-level identification and even distin-
guish individual animals. ML algorithms process visual
data orders of magnitude faster than manual analysis,
with demonstrated capability to filter tens of thousands
of files in minutes to select animal-containing images,
dramatically increasing research efficiency [18].

Given the ongoing ASF panzootic, testing of modern
UAV-based approaches, firstly, as an observational tool
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for wild boar population size and density assessment, and,
secondly, as a tool for efficient searching for wild boar car-
casses and their remnants is of importance for the infec-
tion management in the wild. A review of published liter-
ature identified a critical research gap: no comprehensive

studies exist on the UAVs application for searching for live

wild boars and wild boar carcasses. Our review of Al-inte-
grated UAV systems successfully deployed for other animal

species appears to be helpful for their adaptation to pro-
grams on wild boar population monitoring.

This review synthesizes current knowledge on ad-
vanced Al-integrated UAV (drone) technologies applied
for wildlife monitoring. The review addresses the follow-
ing aspects: role of wild boar in ASF spread and impor-
tance of prompt removal of dead wild boars; use of UAVs
and neural networks for wild large animal population
monitoring with focus on drone-based approach advan-
tages and features as compared to traditional methods.

MATERIALS AND METHODS

Analytical methods and searching in the following
databases: PubMed, Springer, Wiley Online Library, Google
Scholar, CrossRef, RSCI, eLIBRARY, CyberLeninka were used
for the work.

ROLE OF WILD BOARS IN ASF EPI1ZOOTY

Since genotype Il ASF virus detection in Eastern
Europe (2007) the disease has spread to many European
countries and far beyond its borders (to Asia, America
and Oceania). According to the World Organization for
Animal Health, ASF has been reported in 64 countries,
more than 934 thousand pigs and more than 31 thousand
wild boars have been infected over the past three years.
Eurasian wild boars are believed to play the main role in
the disease spread in Europe where more than 19 thou-
sand outbreaks have been reported in wild boar popula-
tion'. In most European countries, ASF spread has been
facilitated for many years by factors potentially associated
with wild boar ecology, infection management strategies
in the wild (for example, an efficient search for dead wild
boars), as well as with the long-term ASF virus persistence
in animal carcasses and in the environment [1]. Monitor-
ing of wild boar populations in Europe shows a steady in-
crease in the population size and expansion of the popu-
lation habitat over the past decades that hampers ASF
management in the infected areas [26]. In Central Euro-
pean countries, Eurasian wild boar population density is
high, 1.15-5.31 animals per 100 ha [27, 28]. The popula-
tion density is known to be one of the important factors
associated with ASF spread among wild boars, the higher
the density, the higher the probability of pathogen trans-
mission by direct contact [29]. For example, in Poland, ASF
cases were reported mainly in the areas where the wild
boar population was more than 1 animal per 1 km?, but
statistical and mechanistic models did not show a clear
and consistent effect of wild boar density on ASF epizoo-
tology [1, 30]. Wild boars living in close proximity to both
private and commercial farms pose a risk of ASF outbreaks
in domestic pigs that becomes higher with the relatively
high number of wild boars [31]. Therefore, ASF manage-
ment requires the most reliable information on wild boar

"WOAH. African swine fever. https://www.woah.org/en/disease/african-
swine-fever/#ui-id-2

population size and density in each region in the context
of various measures. However, it is actually quite difficult
to obtain data close to absolute ones. This is the most chal-
lenging for remote areas and vast territories.

When studying the wild boar population in the context
of ASF control, it is important to take into account their
biological behaviour peculiarities, seasonal and landscape
factors, as well as the virus persistence in the environment.
Recently, a lot of studies has been carried out to examine
various factors that ultimately affect the effective search
for wild boars, their carcasses and remnants. The search
can be improved by target searching for preferred habi-
tats for both healthy and infected animals. Wild boars are
known to be very mobile, hide in dense vegetation, and
to be predominantly nocturnal with peak activity in the
late evening (at sunset), at midnight and in the morning
hours at sunrise throughout most of the year. Reduced
activity at temperatures above 15 °C is their behavioural
adaptation mediated by physiological characteristics.
Wild boars are less active in the forest than in open areas,
and they choose reeds in swampy areas as a safe resting
place [32, 33]. ASF-diseased wild boar preferences should
be taken into account to find the places where they die.
Such animals display changes in their behaviour, they pre-
fer solitude with sufficient shelter, silence, coolness, and
plenty of water, which is associated with the condition
caused by the infection (depression, fever, dyspnoea) [34].
During the studies, the vast majority (71%) of infected car-
casses were found in forests, especially in young wood-
lands, as well as in places remote from roads and settle-
ments, in places of transition from woodlands to sparsely
wooded areas and shrubs, near trails, waterbodies and fo-
rest edges with tall grass [34, 35, 36]. The space-time clus-
tering in detected ASF-positive wild boar carcasses was
most prominent at a distance of 2 km and within 1 week
after the outbreak reporting [37]. Moreover, seasonal fea-
tures of ASF spread should be considered when planning
carcass search activities. In most European countries there
was an evident seasonality in ASF incidence in wild boars
that increased in winter (December - February) and pea-
ked in summer (July). According to Russian researchers,
ASF outbreaks in wild boars reported in the Russian Fe-
deration regions in 2007-2022 also occurred mostly in
November — December and February, with peaks in the
summer months (July — August) [38, 39].

Natural behaviour of wild boars - digging roots, roll-
ing on the ground and exploring various objects — may
be a risk factor for the infection if they live in the virus-
infected environment. Some researchers have shown that
ASF virus transmission in wild boar habitats can occur not
only through direct contact with infected conspecifics,
but also through indirect contact with carcasses, secre-
tions, soil, water, grass, or agricultural crops [28, 40, 41],
while physical contact with pathogen-positive carcasses
or the substrates beneath them poses an equal risk of ASF
virus infection [42]. The carcass and remnant (bones and
skin) decomposition sites remain attractive to wild boars
for a long period of time [40]. The carcass decomposition
process depends on the season and can take several days
in summer to several months in winter [43]. ASF dead wild
boars are a permanent source of infection for other ani-
mals, as the virus is highly resistant to environmental con-
ditions and persists for a long time in various organs, tissues
and secretions. It has been reported that a frozen carcass
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can maintain infectious ASF virus for several months en-
abling the virus to overwinter and to initiate a new out-
break when the defrosted carcass is visited the following

spring by a susceptible wild boar [37]. In the study carried

out in Germany, it was noted that wild boars rummaged

on decomposition sites, sniffing and poking on the con-
specifics’ carcasses, chewing on their bare ribs, the contact
was observed in 30% of all visits by wild boars to such sites

and the wild boars were especially “interested” in rooting

on the soft soil that had formed under and around decom-
posed carcasses [8]. Later, it was found that more than 50%
of cases of transmission in Eastern Poland were associated

with indirect contact with infected carcasses that contri-
buted to ASF virus persistence in wild boar populations [44].
In a recent study in the Czech Republic, a two-year moni-
toring using camera traps was conducted to assess the at-
tractiveness of wild boar carcasses to their live conspecif-
ics. It was shown that the number of visits by wild boars

to the sites with experimentally placed carcasses during

the year was more than five times higher than to control

sites (without carcasses). Wild boars found the carcass rela-
tively quickly, on average in 2 days in spring and summer,
6 days in autumn and 8 days in winter. The earliest visits

were recorded in the spring, when the decomposition

process was accompanied by a strong odour. Also, num-
ber of direct contacts with the carcass that varied depend-
ing on the season was determined. In autumn, wild boars

came into direct contact with the carcass during 340 out
of 541 visits (62.8%), in spring — during 71.2% of visits, in

summer — during 74.5% of visits. The largest number of di-
rect contacts was recorded in winter — 84.1% [33]. These

findings are of great importance, since infected tissues
(muscles, skin, subcutaneous fat) and organs of decompos-
ing carcasses can be sources of ASF infection for several

months, especially at low temperatures [9, 45]. Stability of
the pathogen in the soil depends on the temperature: un-
der experimental conditions at +4 °C, the virus retained its

infectivity for up to 112 days [46], in the soil under the car-
cass — up to 2 weeks [47, 48].The virus survival rate is found

to depend on the soil type and pH level: the virus persists

for a week in the forest and meadow soils, for 3 days in

the soil of swampy areas, for at least 3 weeks in sand, and

quickly dies in acidic forest soils [49].

Wild boars are omnivorous animals, just like domes-
tic pigs, they are characterized by cannibalism. Tissues
of other animals, including their conspecifics, were found
in the stomach contents of wild boars [50]. In the study
performed by J. Cukor et al. [51], direct contact of wild
boar with carcasses was observed in 81% and cannibalism
was observed in 9.8% of all reported visits of wild boars.
Therefore, deliberate or accidental consumption of car-
casses (cannibalism) or invasive contact with carcasses
(with infected blood, tissues, or biological materials) can
be considered as decisive factors in the chain of ASF virus
transmission among wild boars [52]. Furthermore, infec-
ted carcasses can also maintain indirect virus spread by
potential vectors — arthropods [42], as well as scavengers.
According to J. Rietz et al. [53], some scavengers, in par-
ticular foxes, do not consume wild boar carcasses on site,
but can move (scatter) their remnants over rather long
distances in 6-10 days. Carcass parts are scattered over
400 m in 75% of cases, and maximum over 1.2 km. This
should be considered for effective carcass searching as
a part of ASF outbreak management. At the same time,
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such remnants scattering distances make a ground search
by humans almost impossible.

Thus, wild boar carcasses and the surrounding soil are
a reservoir for the long-term ASF virus persistence, and
therefore early, rapid and effective search for potentially
infected carcasses and their timely and safe removal from
the environment are extremely important for minimiza-
tion of the risk of the disease spread in the population. In
ASF endemic areas the special attention should be paid
to these measures using the accumulated knowledge
about diseased wild boar behaviour and environmental
factors that increase the likelihood of carcass detection.

For the purpose of ASF control wild boar population
should be regulated and its density should be maintained
at the lowest possible level in each region [6]. Existing
methods of animal censusing are based on their direct
counting during direct field observation with naked eye
or binoculars, as well as on-site images obtained at fixed
points using camera traps, as well as sampling, surveying,
or analysis of various indirect evidence of animal life [54, 55].
The methods differ in the territory coverage, counting
techniques, objects to be counted, used technical devices,
etc. For example, the widely used method of winter route
counting determines the correlation between the number
of animals detected in a selected area (along the route),
the number of tracks (left during one day) and the daily
animal movement length (provided that the snow cover
is appropriately thick). Today, this basic method is consi-
dered simple and universal, it is relatively low cost since
used technical tools are cheap, but it is not suitable for cen-
susing of elusive animals [55]. The significant disadvantages
of conventional methods for wild animal censusing (com-
plete snow cover, low accuracy, dependence on weather
conditions, etc.) dictate the need for improvement of mon-
itoring technologies. Combined methods are more useful
for obtaining reliable data on the animal population size
and migration. Currently, simultaneous use of several
methods with specialized equipment, such as camera traps,
video or infrared (IR) cameras, has been proven effective.
However, according to some researchers, aerial monitoring
is the most effective method of animal censusing as com-
pared with field methods [19, 54, 55, 56].

USE OF DRONES FOR WILDLIFE MONITORING

Remotely piloted aircraft systems (UAVs) - commonly
known as drones - have been gaining increasing popu-
larity worldwide over the past few years. UAV system in-
cludes three main components: the aircraft itself (drone),
which performs tasks in the air; the ground station where
the drone takes off and lands and where the communi-
cation and control equipment is installed; and the oper-
ator who directly controls the drone during flight. UAVs
have many advantages that make them a powerful tool
for exploring wildlife. Until the past decade, it has been
challenging to gather data on number of the animals
located in particular area and at particular time because
aircraft missions and satellite images are expensive, and
ground-based surveys in many cases are limited by acces-
sibility to sites, the areas that could be covered [11]. UAVs
now provide transformative capabilities for field research,
dramatically decreasing manpower demands, survey du-
rations, and project expenditures. UAVs can be successfully
used in remote areas and under harsh climate conditions.
The selection of the UAV for wild animal monitoring and
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Fig. 1. Thermal image of a wild boar (https://pulsarvision.
com/journal/calm-alert-hungry-getting-to-know-animals-
through-thermal)

animal population size estimation critically depends on its
payload specifications and installed sensors. UAV systems
may incorporate machine vision sensors and Al-powered
analytical capabilities. Al coupled with neural networks fa-
cilitates population census, real-time spatial monitoring
as well as migratory pattern analysis and automated spe-
cies classification [17, 57]. UAVs equipped with advanced
electronic payloads - including digital sensors, night/
thermal imaging cameras, communication systems, and
GPS/GLONASS (Global Navigation Satellite System, GNSS)
positioning units — exhibit significantly enhanced opera-
tional capabilities. Sensors based on machine vision en-
able visual perception of the UAV environment by creating
a captured scene image, for example, a thermal imaging
camera captures and registers IR radiation emitted by sur-
rounding objects. There are practically no hard-to-reach
places for UAVs with photo and thermal imaging cameras.
Infrared cameras facilitate biotic/abiotic differentiation
while maintaining diurnal/nocturnal operational capaci-
ty under varying environmental conditions. Their ability
to detect thermally distinct targets enables wildlife moni-
toring through dense canopy cover and during crepus-
cular/nocturnal periods. In thermal IR waves, an animal
looks like a bright object, provided that the animal’s body
temperature is higher than the ambient temperature (with
a difference of up to 30-40 °C). Thermal images of the best
quality are obtained at sunrise, late evening and at night
(Fig. 1) [19, 54, 55,57, 58].

Current UAV capabilities demonstrate significant po-
tential for search for wild boars, their carcasses and rem-
nants. Drones are capable of flying slowly at low altitudes,
exploring areas that are hard-to-reach during ground-
based surveys, such as dense forests or wetlands, as well
as detecting moving and stationary objects without risk
to humans (Fig. 2). The latter is important when searching
for both living individuals at rest and animal carcasses. It
has been found that images of the area covered by one
frame made at altitude of 150 m are optimal for accurate
counting of large groups of animals.

UAVs offer apparent advantages over traditional
manned aircraft, owing to lower operational costs with
minimal space requirements for their taking off. In addi-
tion, drones are relatively quieter than the latter, they may
present less disturbance risk to animals due to noise, and

Fig. 2. Wild boar monitoring using drone technology
(Al-generated image)

could reduce the risk of biased counts because animals are
less likely to flee and hide [20]. Regarding search for wild
boar carcasses and remnants with UAVs, it should be taken
into account that experiments have shown the high at-
tractiveness of the places with wild boar carcasses and
remnants for their fellow wild boars [33]. Since drones
can easily detect live wild boar gatherings in these areas,
this technology can also be used for wild boar remnant
searching. Moreover, UAV thermal imaging can directly
detect wild boar remnants by capturing heat signatures
from fly larvae clusters and/or microbial activity during
carcass decomposition. The heat generated by feeding lar-
vae can be detected during their peak activity — between
the 6™ and 29" day of carcass decomposition — at ambi-
ent temperatures of 15-27 °C, when insect populations
on the remnants are highest. Analysis of image resolution
at varying flight altitudes revealed that thermal contrast
between remnants and background was highest in noon
recordings at 4 m altitude. A 15 m altitude proved optimal
for balancing survey speed and detection efficacy during
long-term monitoring, and objects became frequently
overlooked beyond 30 m. All these factors should be taken
into account when planning flights in order to maximize
the chances for the remnant detection [59, 60].

UAV systems are continuously improving. Computer vi-
sion-integrated drone systems providing new capabilities
and expanding UAV functionality are increasingly applied
for object detection and recognition. Using computer vi-
sion, drones can autonomously process visual information,
identify objects and make environment-dependant deci-
sions. Currently, modern advanced technologies include
the so-called FPV drones (First Person View) with Betaflight
software and real-time video transmission. These systems
enable high-speed, precise spatial data acquisition and
long-range video signal transmission. FPV drones differ
from conventional GPS drones in their smaller size and
weight, which makes them easy to maneuver and move
quickly (flight speeds can reach 100 km/h or more). FPV
drones equipped with high-resolution cameras and video
transmitters allows the user to see the real-time image
on special glasses or monitor, feel the effect of their own
presence in the airspace and remotely control the drone
movements while adjusting the speed, altitude and angle
of inclination of the device to control flight over a given
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Fig. 3. Hugging-wing robot [62]

terrain. For the purpose of the environment monitoring,
FPV drones, like other UAVs, are used to collect data and
explore vast, new or remote territories, detect and track
moving objects, wildlife habitats, and provide high-quality
geo-referenced images? [61]. Also, application of univer-
sal robotic systems, hugging-wing robots, that can both
hover in the air and perch on vertical supports such as
tree trunks and poles is one of the promising methods
for wild animal behaviour monitoring and collecting data
on their habitats (Fig. 3). Remote autonomous navigation
enables precise landing site determination for such robo-
tic systems, achieving positioning accuracy within several
meter ranges [62].

When planning UAV operations, some critical factors
must be taken into account as they significantly impact
both data quality and collection efficiency. These factors
include: low resolution of the camera or sensor image,
battery charge duration (which therefore determines
the range and area covered in a single drone flight), wea-
ther conditions (strong wind, rain, snow), operator’s con-
trol skills and experience, etc. [21]. Drone management
and maintenance require special training for ground
operators and compliance with security measures. In our
country, use of any UAV is allowed only upon obtaining
all required official documentation and permits in com-
pliance with unmanned aerial vehicle regulations in place
in the Russian Federation.

SOFTWARE AND ARTIFICIAL INTELLIGENCE
USED FOR PROCESSING OF THE DATA
COLLECTED BY DRONES

Conventional methods include visual analysis of photo-
graphs but manual photo analysis becomes increasingly

REVIEWS | PORCINE DISEASES 0B30PbI | BOJIE3HI CBUHEN

labor-intensive and time-consuming when processing
large photographic datasets. This method is inherently
susceptible to human error factors including fatigue, in-
attention, etc. This disadvantage can be minimized by in-
volving several specialists in the work or using software
enabling automatic information processing [58]. Images
obtained by UAV-mounted sensors are typically stitched
togetherinto an assembled digital map by using software
programs. This digital map can then be uploaded into GIS
(Geographic Information System) software, which can be
geographically referenced using GPS data automatically
gathered by the UAV in flight. When a UAV lack an on-board
GPS, geographic coordinates can be manually obtained by
reference to Ground Control Points (physical landmarks
with known coordinates). Image processing of the digital
map may be performed manually by the user, or auto-
matically by image processing software that classifies ob-
jects. Digital files associated with drone images may be
very large (up to 70 terabytes), particularly with the high
resolution required for accurate object recognition [63].
Currently, domestic and foreign researchers use various
software programs for processing data collected during
wildlife monitoring [17, 58]. Longmore S. N. et al. [64]
combined astronomical detection software with existing
ML algorithms for automatic decrypting thermal images
of animals, this pipeline contributed to effective detection
of animals in the images. Currently, up to 30 software pro-
grams are being developed in Russia for different animal
species identification, which count the number of animals
both in a single image and in a series of images, some of
software programmes enable simultaneous processing of
thermal images and video materials® [55]. For example, the
Thermal Infrared Object Finder (TIOF) software developed
on the Python platform is capable of processing a large
amount of infrared image data for specific animal iden-
tification [65].

Convolutional neural networks (CNNs) represent
a state-of-the-art approach facilitating animal detection
and counting in aerial imagery. CNNs are one of the main
types of neural networks used for image recognition
and classification that are composed of two main parts:
feature extraction and classification. Feature extraction
is aimed at creating maps of objects through utilizing
processes called convolutions. CNN model contains
three types of layers: convolutional layer, pooling layer
and fully connected layer. The first two perform feature
extraction, and the fully connected layer displays the ex-
tracted features and performs classification. Deep learn-
ing models offer a significant advantage in processing
accuracy over conventional classification methods when
trained and tested with large datasets, so the use of neural
networks enables creation of accurate models of animal
populations, tracking migration routes, and estimating
population size [17]. Neural network-based flight control
expands the UAVs capabilities. Neural networks demon-
strate dynamic adaptability through continuous learning
from operational data, enabling real-time optimization
of both flight parameters and image acquisition settings
in response to unpredictable environmental variables.
They can combine data from various sensors mounted on
the drone to improve perception and situational aware-
ness, which allows the drone to make more informed

2 https://sky-space.ru/blog/fpv-dron (in Russ.)

3 https://ru.rt.com/qo5p (in Russ.)
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decisions. In addition, neural networks allow UAVs to move
autonomously, easily maneuver around obstacles during
flight and that is very important for monitoring remote
territories. Neural networks can optimize trajectories for
drones, which is useful for the applications such as aerial
photography or surveillance, where certain trajectories
must be followed for optimal data collection [61]. The use
of neural network algorithms minimizes the time required
for task implementation (from a few seconds to several
minutes), but the neural network training can take tens of
hours. At the same time, the user should have program-
ming skills in environments such as Python or Java, and
the computer on which the ML will be performed must
be equipped with appropriate equipment [15].
Outcomes of Al application for animal monitoring
are presented in some studies and reports posted on
the Internet resources. Zhou M. et al. tested two deep
learning neural network models: CNN and deep residu-
al networks (ResNet), for their efficacy for the classifica-
tion of four animal species: cattle (Bos taurus), horses
(Equus caballus), Canadian geese (Branta canadensis)
and white-tailed deer (Odocoileus virginianus). The results
have showed that visible images collected at a distance
of 60 m or less are sufficient for accurate classification,
and that the most effective algorithm can be the Res-
Net model with 18 layers (ResNet 18), since the overall
accuracy rate for animal identification was 99.18% [66].
The experiment conducted by D. Marchowski on count-
ing populations of 33 waterfowl species demonstrated
successful use of Al-integrated UAVs in 96% of 343 ca-
ses. Imagel/Fiji software and ML methods with neural
network algorithms such as DenoiSeg were used for
automated counting [15]. Krishnan B. S. et al. used fu-
sion approach for ML, combining several pairs of ther-
mal and visible images acquired from drones. It was inte-
resting that for white-tailed deer, which were typically
cryptic against their backgrounds and often in shadows
in visible images, the added information from thermal
images improved detection and classification in fusion
methods from 15 to 85%. It has been found that image
fusion in combination with two models of deep neural
networks is ideal for photographing animals that are
cryptic against the background [23]. Combining ima-
ges were taken from 75 and 120 m above ground level,
a faster region-based CNN (Faster R-CNN) was trained
using annotated images labelled “adult caribou”, “calf
caribou” and “ghost caribou” (animals moving between
images and blurring individuals during processing of
photogrammetric data). The model accuracy, precision,
and repeatability was 80, 90, and 88%, respectively [17].
In Hortobagyi Nemzeti Park (Hungary), Al technologies
are used for preservation of endangered Asian wild Prze-
walski horses. Researchers are using drones to monitor
the horse herd behaviour. The acquired high-resolution
footage is processed on the Microsoft Azure platform
and analysed using Al, which is able to distinguish hor-
ses from other animals®. The first tests of the software de-
veloped by specialists of the Moscow Institute of Physics
and Technology in cooperation with the Ministry of Natu-
ral Resources and Environment of the Russian Federation
were conducted in the Land of the Leopard National Park
(Primorsky Krai, Russia). The software program enables

4 https://habr.com/ru/companies/microsoft/articles/567406 (in Russ.)

recognition of Amur leopards, Amur tigers and other wild
animals®. Also, Al-based wild animal recognition system
developed by NtechLab company is currently tested in
Russia. The system is currently integrated with videos
containing bear images, but in the future it is planned
to expand its functionality to cover other wild animal
species®. The Ministry of Natural Resources and Environ-
ment staff-members are performing aerial surveys using
drones and neural networks in some Russian regions
to search for ungulate aggregations’.

Finally, it is worth noting that in 2024, a team of Ameri-
can researchers created the Aerial Wildlife Image Reposi-
tory (AWIR), which is a dynamic interactive database with
annotated images acquired from drones equipped with
conventional and thermal imaging cameras. AWIR pro-
vides the first open-access repository for users to upload,
annotate, and curate images of animals acquired from
drones. The AWIR also provides benchmark datasets that
users can download to train Al algorithms to automatically
detect and classify animals. The AWIR contains 6,587 ani-
mal objects in 1,325 visible and thermal images of pre-
dominantly large birds and mammals [67].

CONCLUSION

Reliable data on population size and density are re-
quired for ASF spread prevention in wild boars and risk
assessment. Animal carcass searching serves as a critical
tool for early ASF detection. The combination of modern
UAVs with neural network algorithms is a highly effective
method of obtaining accurate and timely information
about the natural environment, which, in particular, opens
up new opportunities in the field of wild boar population
monitoring. In the era of the active Al development and
widespread UAVs use, application of innovative techno-
logies in combination with traditional methods appears
to contribute to enhancing the efficiency of searching for
live wild boars and their carcasses as well as the reliability of
the obtained data, that can improve animal health control
as a part of ASF management strategies. Close cooperation
of programmers, wildlife researchers and veterinarians are
required for successful implementation of such approaches.
Since Al-integrated UAV is a cutting-edge technique used
in wildlife research field, it requires ongoing evaluation.
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