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ABSTRACT

Introduction. Zoophilic flies play a significant role in animal disease transmission, and insecticide resistance being a relevant veterinary issue globally is an obstacle
to effective fly population control. Molecular methods are more commonly used to monitor and diagnose insecticide resistance in insect populations.

Objective. The study aims to assess distribution of the main mutations associated with resistance to pyrethroids, organophosphorus compounds and carbamates
in three field populations of Musca domestica L. collected in 2021-2023 in livestock facilities of the Tyumen Oblast.

Materials and methods. Genotyping of CYP, vssc and ace-2 genes was performed using polymerase chain reaction and restriction fragment length polymorphism
analysis.

Results. One mutation in the vssc gene (L1014F) associated with resistance to pyrethroids and two mutations in the ace-2 gene (G342A, G342V) conferring resistance
to organophosphorus compounds and carbamates were found. The resistant allele L1014F was present in 40—70% of the tested insects of all three populations
with 30-55% frequency. The G342A allele was found in 10 and 60% of insects from two populations with frequencies of 5 and 30%, respectively. The G342V allele
was detected in 40% insects of only one population with a frequency of 25%.

Conclusion. The results obtained indicate the potential for conferring resistance to pyrethroids, organophosphorus compounds and carbamates in the studied
populations of Musca domestica, which should be taken into account when selecting disinsectants for livestock-keeping facilities and protecting animals from
insects. Further molecular tests of Musca domestica flies from the regions bordering the Tyumen Oblast will be useful for developing a strategy to contain spread
of resistant alleles in local populations.
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AHANN3 NHCEKTULMAHON YCTOMYMBOCTY
K nupeTponaam, pochopopraHnueckum coeIMHeHNAM
u kapbamatam y Musca domestica L. metogom MLP-TAPO

A. 1. MenbHuuyk, K. C. KpectoHowmHa, A. I. Kunapeitkuna, K. 0. Macnakosa, J1. 1. finruposa, E. A. CunusanoBa

Bcepoccuiickuii HayuHo-1ccnei0BaTeNbCKIIA MHCTUTYT BeTepUHAPHOIA SHToMonory v apaxHonorn — dunuan OrbYH QeaepanbHoro uccnesoBaTeNbCckoro
LieHTpa TioMeHCKoro HayuHoro LieHTpa Cbupckoro otaeneHna Poccuiickiii akagemmun Hayk (BHUMBIA — dunuan TiomHL| CO PAH),

yn. UctutyTekas, 2, r. TiomeHb, 625041, Poccus

PE3IOME

BBepieHue. 3HauvMbIM GaKTOpOM B pacnpocTpaHeHn 3a00MeBaHUii XKIUBOTHbIX ABNAKTCA 300QUIbHbIE MyXH, KOHTPONIb YUCTIEHHOCTY KOTOPbIX OCTIOXHAETCA
npo6nemoii UHCEKTULIMAHOIT PE3UCTEHTHOCTH, aKTYaNbHOI ANA BETEPUHAPUYN 11 MeAULIHBI BO BceM MUpe. [Ins MOHUTOPUMHTA 1 AMArHOCTUKIA YCTORYMBOCTM
K MHCeKTILMAAM B NONYNALMAX HACEKOMbIX BCe 60MblLee NPUMEHEHMe HAXOLAT MONeKYNAPHbIE METOZbI.
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Lienb nccnepoBanua. OueHka pacnpocTpaHeHna 0CHOBHbIX MyTaLiuii, aCCOLIMMPOBAHHbIX € PE3UCTEHTHOCTbIO K NpeTponAam, GocdopopraHnyeckum coefmnHe-
HUAM 1 kapbamatam, B Tpex npupoAHbIX nonynaunax Musca domestica L., cobpanHbix B 2021-2023 rr. B 1BOTHOBOZUECKNX MoMeLLieHnAX TomeHcKoil obnactu.
Marepuanbi u metoabl. MeTozoM nonvmMepasHoii LienHoii peakLyui ¢ aHann3om NoaUMopG13mMa SNUH PecTPUKLMOHHBIX GparmMeHTOB BbINONHEHO reHoTUN-
poBaHue reHoB (P, vssc n ace-2.

PesynbTatbl. BoiaBnexa ogHa mytauua B rexe vssc (L1014F), cBA3aHHas € yCTORYMBOCTbIO K NUPETpOMAaM, 1 iBe MyTaumn B rexe ace-2 (G342A, G342V), obe-
CneyyBaloLLne pe3nCTeHTHOCTb K pocdopopraHinyeckum coefHeHAM v kapbamatam. PesnctenTHblit annenb L1014F npucytcreoBan y 40—70% uccnefoBaHHbIX
0cobeii Bcex Tpex nonynAumii ¢ yactotoit 30—55%. Annenb G342A o6HapyxeH y 10 1 60% ocobeit ABYX nonynALMii ¢ yactoToii 5 1 30% COOTBETCTBEHHO. Anefb
G342V BbiaBneH y 40% ocobeii ToNbKO 0AHON NONYAALMY € YacToToit 25%.

3aknioueHue. [lonyueHHble pe3ynbTaTbl (BUAETENLCTBYIOT 0 MOTeHLMane GopmupoBaHIA yCTOIUNBOCTI K NUPETpouaam, GocdopopraHinyecknm CoeuHEHNAM
1 Kapbamartam B UccnefoBaHHbIX nonynAunax Musca domestica, uTo HeobXoANUMO yuuTbIBaTH NPU BbIGOPE CPEACTB ANA Ae3NHCEKLNI KUBOTHOBOAYECKMX NO-
MeLLEHWI 1 3aLLUTbI KUBOTHBIX OT HaceKOMbIX. [lanbHeiiLume MonekynapHble uccnegosanua Musca domestica 3 rpaHuyaLLnx ¢ TomeHcKoi 06nacTbio pernoHos
6yayT nonesHbl AnA BbipabOTKY CTpaTeruin No CAEPXUBAHNIO PACTPOCTPAHEHIA PE3UCTEHTHBIX anfeneil B I0KaAbHbIX NONYAALMAX.

KntoueBble cnoBa: KOMHaTHasA MyXa, NHCEKTULIMADI, NHCEKTULIMAHAA PE3UCTEHTHOCTb, MapKepbl y(TOI7NVIBOCTI/I, MONeKynApHaa A1MarHoCTika

bnaropapHocTi: Pabota BbiNoNHeHa B pamkax rocyAapCTBeHHOro 3afaxna MuknctepcTsa Hayki u Bbiciuero o6pasoBanusa Poccuiickoii Oepepaun
(tema Ne FWRZ-2022-0022).

[ina untuposanma: MenbHuuyk A. 1., KpectoHownna K. C., Kunapeiikuna A. T., MacnakoBa K. 10., inruposa J1. fl., CunueanoBa E. A. AHanu3 nHcekTLmMaHoi
YCTOUMBOCTH K NUpeTponpam, pocdopopraHuyeckum coefnHeHnaM 1 kapbamatam y Musca domestica L. metogom MLP-MAAPO. Bemepurapus cezoons. 2025;

14.(1): 101-108. https://doi.org/10.29326/2304-196X-2025-14-1-101-108

Konnukt untepecos: ABTopbl 3aABAAIT 00 OTCYTCTBIM KOHGNUKTA MHTEPECOB.

[ina koppecnonpenumn: (unusaxosa Enexa AHaTonbeBHa, kaHA. G1on. HayK, BeayLLyil HayuHbIii COTPYAHUK nabopaTopuy MoneKynapHoi bronorun u 6uo-
TexHonorim Hacekomblx, BHUMBIA — dunuan TiomHLL CO PAH, yn. UkcTuTyTckas, 2, . TiomeHb, 625041, Poccus, sylivanovaea@mail.ru

INTRODUCTION

Insects are a significant factor in the spread of various
human and animal diseases [1, 2], including synanthro-
pic and zoophilic flies, in particular Musca domestica L.
house fly (Diptera: Muscidae) [3, 4]. The ability of adult
M. domestica to be a mechanical vector of such patho-
gens as helminth eggs, protozoa, viruses and bacteria, in-
cluding antibiotic-resistant strains, has been demonstra-
ted in a number of studies [4, 5, 6, 7]. Thus, Mannheimia
haemolytica, Pasteurella multocida and Histophilus somni
causing bovine respiratory diseases were recovered from
M. domestica collected at feedlots from animals suffer-
ing from bovine respiratory disease symptoms [5]. When
homogenates prepared from house flies from US dairy and
livestock farms were tested, tetracycline and florphenicol
resistance genes with prevalence ranging from 5 to 95.8%
were identified in recovered bacteria [6]. The ability
of Newcastle disease virus to persist in an infectious dose
in the gut of flies for four days after feeding with infected
milk and for one day in chicken droppings has been shown
under laboratory conditions [7], which increases the risk
of disease spread via flies present in poultry farms. Given
the veterinary importance of zoophilic flies, it is necessary
to control their numbers.

Despite the great interest in pest control biological
methods, the chemical method based on the use of syn-
thetic insecticidal agents remains widely used. Synthetic
pyrethroids, neonicotinoids, organophosphorus com-
pounds (OPCs), and carbamates are most often used
for protecting animals from insects and disinsecting live-
stock premises both in Russia and abroad [4, 8]. M. domes-
tica quite rapidly develop resistance against insecticides
when used intensively: for example, more than 20-fold

increase of resistance to permethrin [9] and alpha-cyper-
methrin [10] was revealed under laboratory conditions
over 10-20 generations. According to a number of stu-
dies, resistance to pyrethroids (deltamethrin, permethrin,
beta-cyfluthrin, cypermethrin) was observed in house fly
field populations in China [11, 12], Pakistan [9], Iran [13],
USA [14], Saudi Arabia [10, 15], the Moscow and Kaluga
Oblasts of the Russian Federation [8]. In the Tyumen Oblast,
tolerant and exceptionally highly pyrethroid-resistant field
populations were also recorded [16, 17]. OPC-resistant
house fly populations were found, for instance, in Chi-

a [12], Iran [18], and Saudi Arabia [15, 19]. Insecticide re-
sistance of M. domestica field populations makes it difficult
to control their numbers.

The molecular target of pyrethroids is voltage-sensitive
sodium channels (vssc), and the presence of mutations in
the genes encoding this protein, i.e. knock-down resis-
tance (kdr), is recognised as a marker of resistance to py-
rethroids [14, 20]. Of the five known alleles associated with
target insensitivity and, consequently, pyrethroid resis-
tance of insects, the kdr (L1014F) and kdr-his (L1014H) are
the most frequently investigated [13, 14, 20]. Target insen-
sitivity is often combined with another major mechanism
of pyrethroid resistance, namely enhanced detoxification
of insecticides via cytochrome P450-dependent monooxy-
genases (CYP). A confirmed molecular marker of this type
of resistance is the presence of a 15-base pair (bp) insertion
in the CYP6D1 gene [21, 22]. Acetylcholinesterase (AChE),
encoded by the ace gene, is a key enzyme of the choliner-
gic system and a major target of OPC and carbamate in-
secticides, which block the transmission of nerve impulses
at cholinergic synapses. Resistance to OPC and carbamates
may result from insensitivity of AChE due to mutations in
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the ace gene or due to mutations in the carboxylesterase
gene, leading to an increase in the hydrolytic activity of
the enzyme with respect to OPC [20, 23]. M. domestica is
known to have only one AChE-encoding gene, ace-2 [24],
and six major mutations associated with resistance to OPC
and carbamates have been described in detail: V260L,
A316S, G342A, G342V, F407Y, and G445A [25, 26, 27].

Analysis of insecticide resistance in M. domestica field
populations in Russia is traditionally carried out using
toxicological methods [8, 17, 28], which allow establish-
ing the presence of a stable phenotype and the level
of resistance and do not explain the mechanisms under-
lying insecticide resistance [29]. The resistance mecha-
nisms are defined and the potential for its formation is
assessed using biochemical and molecular methods [30],
and these steps are critical for rationalized selection of
insecticidal agents and development of insecticide appli-
cation schemes. As compared to traditional toxicological
methods, molecular tests provide more complete infor-
mation on the population structure, and the combination
of toxicological and molecular methods allows objective
assessment of the level of adaptation of the population
to insecticide load [31]. Among molecular methods for de-
tecting mutations associated with insecticide resistance,
PCR-RFLP (polymerase chain reaction - restriction frag-
ment length polymorphism) is used [32]. The PCR-RFLP
method is cost-effective, easy to implement and requires
only basic molecular genetic equipment; it is widely avail-
able and is a good alternative to sequencing.

The aim of the study was to test Musca domestica flies
collected from three field populations in the Tyumen
Oblast for the presence of mutations in CYP, vsscand ace-2
genes associated with resistance to pyrethroids, OPC and
carbamates by PCR-RFLP.

MATERIALS AND METHODS

The study was aimed at M. domestica flies of three field
populations: Nov (56.53700°, 65.24238°), Cha (56.781583°,
65.96014°), Nik (55.55352°, 70.62864°) collected in live-
stock facilities of the Tyumen Oblast in 2021-2023.The first
generation (F1) was obtained from the collected insects
of each population under insectarium conditions, 3-5 day
old adult flies were frozen and stored at —80 °C before they
were used for testing.

DNA was isolated from adult flies (5 females and males
of each population) using alkaline lysis [33]. The amplifi-

cation process was performed with GeneExplorer GE-96G
(Bioer, China) using an individual primer pair for each gene.
P1, P2, P3, P4 primers were used for genotyping mutations
in the vssc gene, and AceF and AceR primers taken from
the study of X. Qiu et al. [32] were used for the ace-2 gene.
For genotyping of mutation in the CYP6DT gene, the S35
and AS2 primers and restrictase were used according to
F. D. Rinkevich et al. [34]. The amplification conditions
were identical except for the temperature of primer an-
nealing (Table 1): at 95 °C for 5 min, further at 95 °Cfor 20s,
at 62-53 °C for 30 s, at 72 °C for 30 s (5 cycles), at 95 °C
for 20 s, at 60-51 °C for 30 s, at 72°C for 30 s (35 cycles),
at 72 °C for 10 min. The PCR reaction mixture included:
1 pL of total DNA; 4 uL of 5X ScreenMix-HS PCR prepared
mix (Eurogen, Russia); 0.3 pL of each primer (25 uM);
14.4 uL of purified sterile water (18.2 uS/cm). The restric-
tion enzymes and test conditions are indicated in Table 1.
Visualization of restriction results was performed through
electrophoresis with 2% agarose gel containing ethidium
bromide.

RESULTS AND DISCUSSION

The prevalence and frequency of mutations associated
with resistance to pyrethroids and OPCs have been inves-
tigated in M. domestica field populations in Denmark [35],
Turkey [36], Iran [26, 37], USA [14, 34], Kazakhstan [22], Uni-
ted Arab Emirates (UAE) [38] and other countries. Regarding
M. domestica populations in the Russian Federation, resis-
tance to pyrethroids and other insecticides was previous-
ly assessed using mainly toxicological methods [8, 17, 28].
Data on molecular test results of the house fly field popu-
lations and the genetic potential for insecticide resistance
in local populations of the Russian Federation have not
been published in the open access.

Sse9l and Fat | restrictases are used for vssc geno-
typing with PCR-RFLP. The Sse9l restrictase cuts the am-
plicon into 2 fragments of 96 and 60 bp, respectively,
in the presence of the L1014F mutation. The L1014H
mutation is detected using the Fat | enzyme, which, in
the presence of the mutation, cuts the 220 bp amplicon
into fragments of 170 and 50 bp long, respectively [22].
Combining the both test results, we identified the follow-
ing genotypes (Fig. 1): 1014 (L/L), 1014 (L/F), 1014 (F/F).
The L1014F mutation was detected in 70% of the tested
flies of the Nov and Cha populations and in 40% of the flies
of the Nik population (Table 2).

Table 1
PCR-RFLP assay conditions
: 2ey Annealing Amplicon . . Restriction
A=) temperature, °C length, bp (EAEESD MR conditions
P1. GTGCTGTGCGGAGAGTGG
P2. GAAGCCTCCATCCTGGGAG %0 156 Ssedl Lo R
s 20 min - 65°C
P3. AGCTGTATACCCTTCTTCT -
P4, CGAAGTTGGACAAAAGCAAA d 20 Fatl L1014H
$35. AGCTGACGAAATTGATCAATCAGT 1h-37°C
CYPEDT | A2, CATTGGATCATTTTTCTCATC % B-m Hpy 188l POV | 0 min— 65°C
Mh1 | 6342 Zgh.' 378000(
a2 AceF. CGGTGCATTTGGGTTTCTAC 57 609 min—
AceR. CGTAACCGCTAAGATCTGCTG e
3h-37°C
Ao G342A -3
20 min - 65 °C
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Table 2
Distribution of detected mutations associated with insecticide resistance
in three populations of M. domestica in the Tyumen Oblast
Number of flies with Allele
the genotype
L/L L/F F/F

Proportion of flies
frequency, %

with L1014F
mutation, %

Population

Allele
frequency, %

Proportion
of flies with mutation, %

Number of flies with
the genotype

(ha 10 70 3 4 3 50

Nik 10 40 6 2 2 30

10 40 5 1 4 5 25

A B o
s
S
a2 3 ......,""'""
iy
L2 5 g
.4 -
” ~ —150 bp
m 4 —100 bp
Fig. 1. Electrophoregram for PCR-RFLP amplification products
of the vssc gene region: A — using Sse9l restrictase;
B - using Fat | restrictase; 1 -1014 (F/F), 2- 1014 (L/F), 3- 1014 (L/L)
1 23 4 3 b 5% 9 10
E el TR O e — g
W e M e R e M : - " 38%&,
——300 bp
IR 593 = 14 015 160 A% 18 1519 20
‘ o e W e Sese—500 bp
- - -

g

Fig. 2. Electrophoregram for PCR-RFLP amplification products
of CYP6D1 gene region using Hpy 188lll restrictase:
1-20 - different M. domestica species

Hpy 188lIl restrictase is used for CYP genotyping with
PCR-RFLP.Theresistant allele CYP6D1v 1 is characterised by
a 15 bp insertion that disrupts the recognition sequence
of the Hpy 188IIl enzyme. As a result, after restriction, frag-
ments of 432 and 279 bp will be characteristic of the wild-
type genotype, and 732 bp will be characteristic of the
genotype carrying the mutation [34]. No resistant allele
of CYP6D1v1 was detected during the study, but Figure 2
shows that in some flies the 432 bp band is additionally
cut by the Hpy 188lll enzyme.

PCR-RFLP assay of the ace-2 gene was performed us-
ing Mh1 | and Aco | enzymes. The Mh1 | restrictase has
a restriction site (GGC) that is characteristic of the wild-
type genotype, 342G. After restriction, the two fragments
of 361 and 248 bp detected in the electrophoregram are

indicative of a wild type genotype, and a 609 bp fragment
is indicative of the G342A or G342V mutation. The Aco |
restrictase identifies the G342A mutation and cuts the am-
plicon into 2 fragments of 361 and 248 bp long. Thus,
combining the two assays allows the detection of 6 diffe-
rent genotypes [32]. In our study we managed to detect
3 different genotypes (Fig. 3). G342A or G342V mutations
were found in the Nov population. In the Nik population,
the proportion of flies with G342A and G342V mutations
was 10 and 40%, respectively. In the Cha population, only
G342A mutation was detected in 60% of flies (Table 2).

In total, 3 (L1014F, G342A, G342V) out of 5 tested muta-
tions were identified using the PCR-RFLP. The distribution
frequencies of the resistant alleles in the three popula-
tions are presented in Table 2. The kdr mutation (L1014F)
was found in the hetero- and homozygous state in 7 out
of 10 flies of the Nov and Cha populations and in 4 out
of 10 flies of the Nik population. The kdr-his mutation
(L1014H) was not detected in any of the three populations.
Test results for field populations of M. domestica in Turkey
showed that the frequency of kdr and kdr-his alleles was
8 and 20%, respectively [36]. A survey of six field popula-
tions of the house fly in Kazakhstan showed the presence
of the kdr allele in one of the populations with a frequen-
cy of 5% and the kdr-his allele in another population with
a frequency of 14.3% in the heterozygous state [22]. Inte-
restingly, the L1014F mutation was not reported in the Ira-
nian population of M. domestica, and the percentage of
kdr-his polymorphism (L1014H) was low at 4.7% [37]. On
the contrary, in the USA, the kdr (L1014F) mutation was
present in all six studied populations of house flies found
in poultry and livestock farms, and kdr-his (L1014H) muta-
tion was present in five populations. The frequency of kdr-
his and kdralleles varied widely in the populations, ranging
from 12.5-28.1% and 7.1-76.6%, respectively [14]. A recent
paper reported the detection of the kdr allele in M. do-
mestica flies from the United Arab Emirates with the fre-
quencies ranging from 9.4 to 46.9% [38]. The frequency of
the resistant kdr allele (30-55%) in house fly populations
in the Tyumen Oblast is comparable to that of populations
from the USA and the UAE.

According to literature data, the knockdown resistance
was first reported in house flies in the 1950s as insensitivity
of sodium channels to the action of dichlorodiphenyltri-
chloroethane (DDT). It was later found that such resistance
was associated with a nucleotide substitution (cytosine for
thymine) in the vssc gene, resulting in the replacement
of leucine with phenylalanine at position 1014 (L1014F)
of the sodium channel alpha subunit [39]. As a result,
structural changes in the protein molecule occur, affect-
ing the interaction of the insecticide with the target. This
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mutation also leads to the formation of resistance to pyre-
throids, as they have a similar mechanism of action to DDT.
The L1014F mutation, in addition to M. domestica, has

been found in other two-winged insects (e.g., Culex and

Anopheles mosquitoes, Haematobia fatheads), red cock-
roach (Blattella germanica), cat flea (Ctenocephalides felis),
rat flea (Xenopsylla cheopis), triatomine bugs (e.g., Triatoma

infestans), and other arthropods [39, 40].

One of the sufficiently described mechanisms of re-
sistance to pyrethroids in insects is the enhancement
of detoxification mediated by cytochrome P450-depen-
dent monooxygenases (CYP) [41]. This type of insecticide
resistance in M. domestica is associated with increased
expression of the CYP6DT gene in the presence of 15 bp
insertion (CYP6D1vT allele) [34]. In the USA, the resistant
CYP6D1vT allele was detected with a frequency of > 75%
in 5 studied populations of M. domestica [14]. According
to V. Taskin et al., the frequency of CYP6D1v1 in house fly
population from Turkey was 39% [36]. In Kazakhstan, this
allele was present in 3 out of 6 populations of M. domestica
with a much lower frequency: 4.4-6.3% [22]. In our study,
PCR-RFLP assay did not reveal an insertion characteristic
of the resistant allele of CYP6D1v; however, a mutation
described earlier for M. domestica laboratory culture was
detected in flies from the Nov and Cha populations [42].
Freeman J. C. et al. rightly pointed out in their study that
CYP6D1v1 is only partially responsible for the increased ex-
pression level of CYP6D1 [14]. Due to the high evolutionary
plasticity of CYPs, their other representatives or other mu-
tations not yet described may be involved in the formation
of resistance to insecticides - in general, and pyrethroids -
in particular, in local M. domestica populations.

Detection of a rather large percentage of flies with
the kdr mutation among M. domestica of the three field
populations under study is not surprising, since, accord-
ing to the surveys, pyrethroids (mainly deltamethrin and
cyfluthrin) had been used for premise disinsection and ani-
mal protection from annoying insects for several seasons
in livestock farms where the flies were collected. The use of
these insecticides in this case served as a selection factor
that apparently allowed the kdr (L1014F) mutation to gain
a foothold in the populations under study. It is believed
thatin the presence of the kdr (L1014F) mutation, a higher
level of pyrethroid resistance is formed than in the pre-
sence of the kdr-his (L1014H) mutation [36, 37]. In order
to slow down the emergence of populations highly resis-
tant to pyrethroids, it is advisable to replace pyrethroids
with insecticides with a different mechanism of action
(e.g., pyrroles, oxadiazines, insect growth regulators, etc.)
in the studied livestock farms.

The higher Diptera have only one AChE-encoding gene
and, accordingly, mutations providing resistance to OPCs
and carbamates in this group of insects were found only
in the ace-2 gene. Such mutations individually or in com-
bination lead to amino acid substitutions close to the
catalytic triad of the active centre of the enzyme, affecting
the orientation of the amino acids of the triad and limiting
the access and/or binding of bulk insecticides (enzyme in-
hibitors) in the substrate centre of the protein [25]. Six such
mutations have been described in detail for M. domestica:
V260L, A316S, G342A, G342V, F407Y and G445A [25, 28].
In addition to M. domestica, resistance to OPCs and car-
bamates is known to be formed by a similar mechanism
in other insect species, such as the green meat fly Lucilia

A

a1 o .
600bp s il G ol s e
Lo
400 bp —tws ,
300 bp — v .l
200 bp — -

Fig. 3. Electrophoregram for PCR-RFLP amplification products
of ace-2 gene region: A — using Mh1 | restrictase;

B —using Aco I restrictase; 1 - 342 (G/V), 2 - 342 (G/G), 3 - 342 (G/A)

cuprina [43], Drosophila melanogaster [44, 45], and tephritid

fruit flies Bactrocera oleae [46] and Bactrocera dorsalis [47].
In their study S. Baskurt et al. [48] indicated equivalent

substitutions of amino acid residues in the AChE molecule

for M. domestica and D. melanogaster. Literature data indi-
cate that mutations underlying resistance of the house fly

to OPCs and carbamates are widespread worldwide. Thus,
resistant alleles G342A and G342V were found in flies of
field populations of M. domestica of the USA, China, Iran,
Kazakhstan [14, 22, 26, 49]. In house fly populations from

Kazakhstan, G342A and G342V resistant alleles were found

with a frequency of 27-48 and 0-20%, respectively [22].
G342A and G342V mutations were detected in 30 and 40%

of M. domestica flies from Iran, respectively [26]. In our

study, the G342V resistant allele was only present in the Nik

population (the mutation was present in 40% of flies) with

a frequency of 25%, the G342A allele in the Nik (in 10%

of flies) and Cha (in 60% of flies) populations with a fre-
quency of 5 and 30%, respectively, and these mutations

were not detected in the Nov population. Itis assumed that

the allele with the G342V mutation plays a more significant

role in AChE insensitivity and the formation of a high level

of resistance to certain insecticides compared to that with

G342A mutation [14, 25, 49].

CONCLUSION

In this study, PCR-RFLP assay showed presence of
the kdr allele (L1014F), responsible for resistance to pyre-
throids, with a frequency of 30-55% and the G342A/V al-
leles associated with resistance to OPCs and carbamates,
with a frequency of 5-30% in flies from three and two field
populations of M. domestica in the Tyumen Oblast, respec-
tively. The presented data indicate the potential for forma-
tion of resistance to pyrethroids, OPCs and carbamates in
the studied populations. On the basis of the obtained results
it is possible to recommend replacement of these insecti-
cides during disinsection of livestock facilities with prepa-
rations from other groups in order to mitigate the spread
of resistant alleles in local populations of M. domestica. Fur-
ther molecular studies of insects from different regions of
the country are required to assess more fully the situation
regarding resistance to pyrethroids, OPCs and carbamates
and the potential for its formation in M. domestica in Russia.
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